Computations based on density functional theory (DFT) are transforming various aspects of materials research and discovery. However, the effort required to solve the central equation of DFT, namely the Kohn-Sham equation, which remains a major obstacle for studying large systems with hundreds of atoms in a practical amount of time with routine computational resources. Here, we propose a deep learning architecture that systematically learns the input-output behavior of the Kohn-Sham equation and predicts the electronic density of states, a primary output of DFT calculations, with unprecedented speed and chemical accuracy. The algorithm also adapts and progressively improves in predictive power and versatility as it is exposed to new diverse atomic configurations. We demonstrate this capability for a diverse set of carbon allotropes spanning a large configurational and phase space. The electronic density of states, along with the electronic charge density, may be used downstream to predict a variety of materials properties, bypassing the Kohn-Sham equation, leading to an ultrafast and high-fidelity DFT emulator.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.0c07458DOI Listing

Publication Analysis

Top Keywords

kohn-sham equation
12
deep learning
8
electronic density
8
density states
8
efficient deep
4
learning scheme
4
scheme predict
4
electronic
4
predict electronic
4
electronic structure
4

Similar Publications

Ensemble Density Functional Theory of Ground and Excited Energy Levels.

J Phys Chem A

January 2025

Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.

A Kohn-Sham (KS) density-functional energy expression is derived for any (ground or excited) state within a given many-electron ensemble along with the stationarity condition it fulfills with respect to the ensemble density, thus giving access to both physical energy levels and individual-state densities, in principle exactly. We also provide working equations for the evaluation of the latter from the true static ensemble density-density linear response function. Unlike in Gould's recent ensemble potential functional approach to excited states [arXiv:2404.

View Article and Find Full Text PDF

In this paper, we demonstrate the performance of several density-based methods in predicting the inversion of S1 and T1 states of a few N-heterocyclic triangulene based fused ring molecules (popularly known as INVEST molecules) with an eye to identify a well performing but cost-effective preliminary screening method. Both conventional linear-response time-dependent density functional theory (LR-TDDFT) and ΔSCF methods (namely maximum overlap method, square-gradient minimization method, and restricted open-shell Kohn-Sham) are considered for excited state computations using exchange-correlation (XC) functionals from different rungs of Jacob's ladder. A well-justified systematism is observed in the performance of the functionals when compared against fully internally contracted multireference configuration interaction singles and doubles and/or equation of motion coupled-cluster singles and doubles (EOM-CCSD), with the most important feature being the capture of spin-polarization in the presence of correlation.

View Article and Find Full Text PDF

Attosecond Probing of Coherent Vibrational Dynamics in CBr.

J Phys Chem A

October 2024

Department of Chemistry, University of California, Berkeley, California 94720, United States.

A coherent vibrational wavepacket is launched and manipulated in the symmetric stretch (a) mode of CBr, by impulsive stimulated Raman scattering (ISRS) from nonresonant 400 nm laser pump pulses with various peak intensities on the order of tens of 10 W/cm. Extreme ultraviolet (XUV) attosecond transient absorption spectroscopy (ATAS) records the wavepacket dynamics as temporal oscillations in XUV absorption energy at the bromine M 3d edges around 70 eV. The results are augmented by nuclear time-dependent Schrödinger equation simulations.

View Article and Find Full Text PDF

It is a well-established standard to describe ground-state chemical reactions at an ab initio level of multi-electron theory. Fast reactions can be directly simulated. The most widely used approach is density functional theory for the electronic structure in combination with molecular dynamics for the nuclear motion.

View Article and Find Full Text PDF

To expand the QUEST database of highly accurate vertical transition energies, we consider a series of large organic chromogens ubiquitous in dye chemistry, such as anthraquinone, azobenzene, BODIPY, and naphthalimide. We compute, at the CC3 level of theory, the singlet and triplet vertical transition energies associated with the low-lying excited states. This leads to a collection of more than 120 new highly accurate excitation energies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!