Bioinspired Anti-Oil-Fouling Hierarchical Structured Membranes Decorated with Urchin-Like α-FeOOH Particles for Efficient Oil/Water Mixture and Crude Oil-in-Water Emulsion Separation.

ACS Appl Mater Interfaces

State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China.

Published: November 2020

Designing and constructing a stable water-retention layer acting as the isolation between the oil and membrane surface holds great significance for solving the membrane fouling problems in oil/water separation, including common layered oil/water mixtures, immiscible oil-in-water emulsions, and even high-viscosity crude oil-in-water emulsions. Inspired by the self-cleaning property of sea urchin thorns, a bioinspired anti-oil-fouling hierarchically structured membranes decorated with urchin-like α-FeOOH particles was successfully prepared via the layer-by-layer (LBL) self-assembly method, maintaining numerous effective micro-nanopores. The hierarchical structured membrane exhibited superior superhydrophilicity/underwater superoleophobicity, high water-retention ability, and preferable anti-oil-fouling properties. Furthermore, the biomimetic membrane with controllable pore sizes could not only separate common layered oil/water mixtures but also effectively separate immiscible surfactant-stabilized oil-in-water emulsions of both low-viscosity crude oil and high-viscosity crude oil with an ultrahigh water flux up to 2598.4 L m h and an outstanding separation efficiency of 98.5%, revealing its promising prospect in oily wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c11677DOI Listing

Publication Analysis

Top Keywords

oil-in-water emulsions
12
bioinspired anti-oil-fouling
8
hierarchical structured
8
structured membranes
8
membranes decorated
8
decorated urchin-like
8
urchin-like α-feooh
8
α-feooh particles
8
crude oil-in-water
8
common layered
8

Similar Publications

Structural and functional properties of fava bean albumin, globulin and glutelin protein fractions.

Food Chem X

January 2025

Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.

This study reports a comparative evaluation of the physicochemical and functional properties of fava bean albumin, globulin and glutelin proteins. The fava bean globulins had significantly ( < 0.05) higher protein content (88.

View Article and Find Full Text PDF

Oil spills and industrial oily wastewater pose serious threats to the environment. A series of modified membranes with special wettability have been widely used for separating oil/water mixtures and emulsions. However, these membranes still face challenges such as the detachment of the modified coatings and membrane fouling.

View Article and Find Full Text PDF

Algae extract-based nanoemulsions for photoprotection against UVB radiation: an electrical impedance spectroscopy study.

Sci Rep

January 2025

Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia.

Skin cancer is one of the most common types of cancer worldwide, with exposure to UVB radiation being a significant risk factor for its development. To prevent skin cancer, continuous research efforts have focused on finding suitable photoprotective ingredients from natural sources that are also environmentally friendly. This study aimed to develop oil-in-water photoprotective nanoemulsions containing marine macroalgae extract.

View Article and Find Full Text PDF

The low stability of water-in-oil-in-water (W/O/W) double emulsions greatly limits their applications. Therefore, in this study, W/O/W Pickering double emulsions (PDEs) were prepared by a two-step emulsification method using polyglycerol polyricinoleate (PGPR) and xanthan gum/lysozyme nanoparticles (XG/Ly NPs) as lipophilic and hydrophilic emulsifiers, respectively. The regulation mechanism of the performance of PDEs by XG/Ly NPs was investigated, and the ability of the system to co-encapsulate epigallocatechin gallate (EGCG) and β-carotene was evaluated.

View Article and Find Full Text PDF

Oil-in-Water Emulsions Made of Pistachio Oil: Physical and Chemical Properties and Stability.

Foods

December 2024

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy.

Pistachio nuts are valued for their sensory qualities, nutritional benefits, and health-promoting properties. Pistachio oil has also gained interest for its bioactive compounds, though these are sensitive to processing and environmental stresses. While pistachio-based products are commercially available, little research has addressed the emulsifying properties of crude pistachio oil or its impact on the stability and bioactive profile of oil-in-water (O/W) emulsions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!