Food and feed contamination by emerging mycotoxins beauvericin and enniatins is a worldwide health problem and a matter of great concern nowadays, and data on their toxicological behavior are still scarce. As ingestion is the major route of exposure to mycotoxins in food and feed, the gastrointestinal tract represents the first barrier encountered by these natural contaminants and the first structure that could be affected by their potential detrimental effects. In order to perform a complete and reliable toxicological evaluation, this fundamental site cannot be disregarded. Several in vitro intestinal models able to recreate the different traits of the intestinal environment have been applied to investigate the various aspects related to the intestinal toxicity of emerging mycotoxins. This review aims to depict an overall and comprehensive representation of the in vitro intestinal effects of beauvericin and enniatins in humans from a species-specific perspective. Moreover, information on the occurrence in food and feed and notions on the regulatory aspects will be provided.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693699 | PMC |
http://dx.doi.org/10.3390/toxins12110686 | DOI Listing |
Talanta
December 2024
Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100, Murcia, Spain.
A reliable and sensitive analytical platform is proposed for the assessment of pig exposure to mycotoxins through the consumption of commercial feed. A total of 48 naturally contaminated feed and 55 urine samples collected from eight Spanish farms were analyzed using a fast and simple methodology based on solid-liquid extraction (SLE) or liquid-liquid extraction (LLE) and dispersive liquid-liquid microextraction (DLLME). High-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was used for the targeted analysis of 27 mycotoxins from different families in both matrices achieving limits of quantification in a range of 0.
View Article and Find Full Text PDFMycotoxin Res
December 2024
Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Molds of the genus Fusarium infect nearly all types of grain, causing significant yield and quality losses. Many species of this genus produce mycotoxins, which pose significant risks to human and animal health. In beer production, the complex interaction between primary fungal metabolites and secondarily modified mycotoxins in barley, malt, and beer complicates the situation, highlighting the need for effective analytical methods to quickly and accurately monitor these toxins.
View Article and Find Full Text PDFFood Chem
December 2024
NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, PR China.
Wheat is a most important food crop worldwide. Wheat is reported to be susceptible to a variety of fungi, which could induce huge economic losses and the contamination of potential mycotoxins could bring serious toxic effects. In this work, UV-C irradiation treatment on Fusarium infected wheat seeds during germination was investigated.
View Article and Find Full Text PDFFungal Biol
December 2024
Research National Council, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126, Bari, Italy.
Maize is a worldwide crop yet can be associated with mycotoxigenic fungi, much investigated in humid tropical and cooler, wet temperate regions. However, in hot, arid/semi-arid regions data on their occurrence are poor. In this paper, we focused on interactions between maize and Fusarium fungal species in Tunisia, which has a Mediterranean climate, with hot, dry summers and milder, damper winters.
View Article and Find Full Text PDFArch Toxicol
December 2024
Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
Some Penicillium strains used in cheese ripening produce emerging mycotoxins, notably roquefortine C (ROQC) and cyclopiazonic acid (CPA), as well as enniatins (ENNs) and beauvericin (BEA). Co-occurrence of these mycotoxins in natural samples has been reported worldwide, however, most studies focus on the toxicity of a single mycotoxin. In the present study, the effects of ROQC and CPA alone and in combination with BEA and ENNs A, A1, B, and B1 were analysed in human neuroblastoma cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!