Derivatives of 3,9-dichloro-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[,]undecane-3,9-dioxide (SPDPC) are of increasing interest as flame retardants for polymeric materials. In addition, SPDPC is also an important intermediate for the preparation of intumescent flame retardants (IFRs). However, low efficiency and undesirable dispersion are two major problems that seriously restrain the application of IFRs as appropriate flame retardants for polymer materials. Usually, the functionalization or modification of SPDPC is crucial to acquiring high-performance polymer composites. Here, a small molecule spirocyclic flame retardant diphenylimidazole spirocyclic pentaerythritol bisphosphonate (PIPC) was successfully prepared through the substitution reaction between previously synthesized intermediate SPDPC and 2-phenylimidazole (PIM). Phenyl group and imidazole group were uniformly anchored on the molecular structure of SPDPC. This kind of more uniform distribution of flame retardant groups within the epoxy matrix resulted in a synergistic flame retardant effect and enhanced the strength of char layers to the epoxy composites, when compared to the unmodified epoxy. The sample reached a limiting oxygen index (LOI) of 29.7% and passed with a V-0 rating in the UL 94 test with the incorporation of only 5 wt % of as-prepared flame retardant PIPC. Moreover, its peak of heat release rate (pHRR) and total heat release (THR) decreased by 41.15% and 21.64% in a cone calorimeter test, respectively. Furthermore, the addition of PIPC has only slightly impacted the mechanical properties of epoxy composites with a low loading.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694069 | PMC |
http://dx.doi.org/10.3390/polym12112534 | DOI Listing |
Int J Biol Macromol
December 2024
State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:
In this study, two phosphorus-based flame retardants diethylenetriamine trimethyl diphosphonate lysine (APTA) and a tetrakis(hydroxymethyl)phosphonium sulfate prepolymer with urea (DUPT) were synthesized. The structures of these compounds were characterized via nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR). FTIR and scanning electron microscopy (SEM) analyses revealed that DUPT crosslinked APTA onto cellulose, which was pre-processed with diethylenetriamine dipropylene oxide (NAED) to introduce NH groups through PCN bonds.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Polylactic acid (PLA) is a bio-recyclable plastic, but its high flammability limits broader applications. Here, a novel flame retardant (Zn-CHP) is synthesized from chitosan (CH), diethylenetriaminepenta (methylenephosphonic) acid (DTPMP), and ZnCl₂ using a simple, solvent-free process. The Zn-CHP additive is melt-blended with PLA, achieving excellent flame retardancy at just 2 wt% loading.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
Polyurethane sponge is frequently selected as a substrate material for constructing flexible compressible sensors due to its excellent resilience and compressibility. However, being highly hydrophilic and flammable, it not only narrows the range of use of the sensor but also poses a great potential threat to human safety. In this paper, a conductive flexible piezoresistive sensor (CHAP-PU) with superhydrophobicity and high flame retardancy was prepared by a simple dip-coating method using A-CNTs/HGM/ADP coatings deposited on the surface of a sponge skeleton and modified with polydimethylsiloxane.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia.
TCIPP (tris(1,3-dichloro-2-propyl) phosphate) and TCEP (tris(2-chloroethyl) phosphate) are organophosphate ester flame retardants found in various consumer products, posing significant health and environmental risks through inhalation, ingestion, and dermal exposure. Research reveals these compounds cause oxidative stress, inflammation, endocrine disruption, genotoxicity, neurotoxicity, and potentially hepatotoxicity, nephrotoxicity, cardiotoxicity, developmental, reproductive, and immunotoxicity. This review summarizes the current knowledge on the toxicological mechanisms of TCIPP and TCEP and presents the latest data on their toxicological effects obtained in vitro and in vivo, using omic systems, and on the basis of computational modelling.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, 08034 Barcelona, Spain. Electronic address:
The assessment of persistence of organic pollutants in seawater is limited by the lack of user-friendly, quick protocols for assessing one of their main sinks, degradation by marine bacteria. Here we present an experimental workflow to identify organic pollutants degradation, taking organophosphate esters flame retardants and plasticizers (OPEs-FR-PL), as a model family of synthetic chemicals released into the marine environment that are particularly widespread due to their persistence and semi-volatile nature. The proposed novel workflow combines culture-dependent techniques, solvent demulsification-dispersive liquid-liquid microextraction, with quantitative liquid chromatography coupled with mass spectrometry analyses in order to identify marine bacterial isolates with the potential to degrade OPEs-FR-PL in the marine environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!