Austenitic 316L steel is known for its good oxidation resistance and corrosion behavior. However, the poor wear protection is its substantial disadvantage. In this study, laser surface alloying with boron and some metallic elements was used in order to form the surface layers of improved wear behavior. The microstructure was studied using OM, SEM, XRD, and EDS techniques. The laser-alloyed layers consisted of the only re-melted zone (MZ). The hard ceramic phases (FeB, CrB, NiB, or NiB borides) occurred in a soft austenitic matrix. The relatively high overlapping (86%) resulted in a uniform thickness and homogeneous microstructure of the layers. All the laser-alloyed layers were free from defects, such as microcracks or gas pores, due to the use of relatively high dilution ratios (above 0.37). The heat-affected zone (HAZ) wasn't visible in the microstructure because of the extended stability of austenite up to room temperature and no possibility to change this structure during fast cooling. The use of the mixtures of boron and selected metallic elements as the alloying materials caused the diminished laser beam power in order to obtain the layers of acceptable quality. The thickness of laser-alloyed layers (308-432 μm) was significantly higher than that produced using diffusion boriding techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663681 | PMC |
http://dx.doi.org/10.3390/ma13214852 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca-binding organic-peptide hybrid. The designed molecule, designated Ca-binding switch (CaBS), combines an EF-hand motif from classical Ca-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Molecular Ecology and Evolution Group, School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom.
Phenotypic plasticity may pave the way for rapid adaptation to newly encountered environments. Although it is often contested, there is growing evidence that initial plastic responses of ancestral populations to new environmental cues may promote subsequent adaptation. However, we do not know whether plasticity to cues present in the ancestral habitat (past-cue plasticity) can facilitate adaptation to novel cues.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology, 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China.
Objective: To investigate the effects and mechanisms of miRNA 221 on myocardial ischemia/reperfusion injury (MIRI) in mice through the regulation of phospholamban (PLB) expression.
Methods: The MIRI mouse model was created and mice were divided into sham, MIRI, MIRI+ 221, and MIRI+ scr groups, with miRNA 221 overexpression induced in the myocardium of MIRI mice by targeted myocardial injection. Quantitative RT-PCR analysis was performed to observe the variation in miRNA 221, PLB, SERCA2, RYR2, NCX1, Cyt C and caspase 3 mRNA levels in myocardium, while Western blot assessed the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), SERCA2, RYR2, NCX1, Cyt C and caspase 3 proteins.
Plant Cell Rep
January 2025
CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India.
Foliar-applied Zn on Catharanthus roseus enhanced production of vindoline, the main impediment precursor for costly anticancer bisindoles. A leaf-abundant CrZIP was characterized for likely role in modulating vindoline metabolism. The leaf-localized Catharanthus roseus alkaloid, vindoline, is the major impediment precursor in the production of scanty and expensive anticancer bisindoles, vinblastine and vincristine.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!