Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Laser-induced periodic surface structures (LIPSSs) spontaneously appearing on the laser-treated (melted or evaporated) surfaces of bulk solid materials seem to be a well-studied phenomenon. Peculiarities of oxidative mechanisms of LIPSS formation on thin films though are far less clear. In this work, the appearance of oxidative LIPSSs on thin titanium films was demonstrated under the action of commercially available nanosecond-pulsed Yb-fiber laser. The temperature and energy regimes favoring their formation were revealed, and their geometric characteristics were determined. The period of these LIPSSs was found to be about 0.7 , while the modulation depth varied between 70 and 110 nm, with high stability and reproducibility. It was shown that LIPSS orientation is rather easily manageable in the regimes of our interest, which could provide a way of controlling their properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693259 | PMC |
http://dx.doi.org/10.3390/nano10112161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!