Robots working in human environments often encounter a wide range of articulated objects, such as tools, cabinets, and other jointed objects. Such articulated objects can take an infinite number of possible poses, as a point in a potentially high-dimensional continuous space. A robot must perceive this continuous pose to manipulate the object to a desired pose. This problem of perception and manipulation of articulated objects remains a challenge due to its high dimensionality and multimodal uncertainty. Here, we describe a factored approach to estimate the poses of articulated objects using an efficient approach to nonparametric belief propagation. We consider inputs as geometrical models with articulation constraints and observed RGBD (red, green, blue, and depth) sensor data. The described framework produces object-part pose beliefs iteratively. The problem is formulated as a pairwise Markov random field (MRF), where each hidden node (continuous pose variable) is an observed object-part's pose and the edges denote the articulation constraints between the parts. We describe articulated pose estimation by a "pull" message passing algorithm for nonparametric belief propagation (PMPNBP) and evaluate its convergence properties over scenes with articulated objects. Robot experiments are provided to demonstrate the necessity of maintaining beliefs to perform goal-driven manipulation tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scirobotics.aaw4523 | DOI Listing |
Sensors (Basel)
December 2024
Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai 200240, China.
Taking the titanium alloy wing-body connection joint at the rear beam of a certain type of aircraft as the research object, this study analyzed the failure mechanism and verified the structural safety of the wing-body connection joint under actual flight loads. Firstly, this study verified the validity of the loading system and the measuring system in the test system through the pre-test, and the repeatability of the test was analyzed for error to ensure the accuracy of the experimental data. Then, the test piece was subjected to 400,000 random load tests of flight takeoffs and landings, 100,000 Class A load tests, and ground-air-ground load tests, and the test piece fractured under the ground-air-ground load tests.
View Article and Find Full Text PDFSoc Stud Sci
January 2025
King's College London, London, UK.
Cyber threat intelligence firms play a powerful role in producing knowledge, uncertainty, and ignorance about threats to organizations and governments globally. Drawing on historical and ethnographic methods, we show how cyber threat intelligence analysts navigate distinctive types of uncertainty as they transform digital traces into marketable products and services. We make two related contributions and arguments.
View Article and Find Full Text PDFCompr Physiol
December 2024
School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
The evolution of mechanisms for terrestrial locomotion has resulted in multi-segmented limbs that allow navigation on irregular terrains, changing of direction, manipulation of external objects, and control over the mechanical properties of limbs important for interaction with the environment, with corresponding changes in neural pathways in the spinal cord. This article is focused on the organization of these pathways, their interactions with the musculoskeletal system, and the integration of these neuromechanical circuits with supraspinal mechanisms to control limb impedance. It is argued that neural pathways from muscle spindles and Golgi tendon organs form a distributive impedance controller in the spinal cord that controls limb impedance and coordination during responses to external disturbances.
View Article and Find Full Text PDFACS Sens
December 2024
School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Taoyuan, Shenzhen, 518000 Guangdong, China.
Bending sensors are critical to the advancement of wearable electronics and can be applied in the dynamic monitoring of flexible object morphology. However, current bending sensors are constrained by sensing range and precision, especially in full-range detection. The maximum sensing range of existing flexible bending sensors is 0-240°.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Building Construction and Structures, South Ural State University, Chelyabinsk 454080, Russia.
The object of research is cured thermosetting epoxy polymer and FRP on the base of the same polymer matrix. The purpose of this research is to develop the finite element (FE) method in the modeling of cured thermosetting polymers and FRPs to predict their mechanical and thermal properties. The structural mathematical modeling with subsequent computer FE modeling was performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!