MiR-381-3p redistributes between cytosol and mitochondria and aggravates endothelial cell injury induced by reactive oxygen species.

Tissue Cell

The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China. Electronic address:

Published: December 2020

MicroRNAs (miRNAs) are reported to play pivotal roles in reactive oxygen species (ROS)-induced endothelial cell injury and several studies have demonstrated the miRNA distribution in the mitochondria of various cells. However, very little is known about its changes and roles in ROS-induced endothelial cell injury. In the present study, we systematically revealed the distribution changes of miRNAs in mitochondria during ROS-induced endothelial cell injury and found that HO obviously reduced the mitochondrial distribution of many miRNAs without affecting their expression levels in the whole endothelial cells. Most of these miRNAs showing reduced mitochondrial distribution were potentially involved in ROS-induced endothelial cell injury. MiR-381-3p was a typical representative of these miRNAs and its redistribution between mitochondria and cytosol regulated the network consisting of downstream molecules (P53, P21, CCND1, and MYC) by inhibiting its target genes (LRP6 and NFIA) to promote apoptosis and inhibit proliferation in endothelial cells. Our findings highlight the significance of redistribution of miRNAs between mitochondria and cytosol and improve our understanding of miRNA function regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2020.101451DOI Listing

Publication Analysis

Top Keywords

endothelial cell
20
cell injury
20
ros-induced endothelial
16
reactive oxygen
8
oxygen species
8
mirnas mitochondria
8
reduced mitochondrial
8
mitochondrial distribution
8
endothelial cells
8
mitochondria cytosol
8

Similar Publications

The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life.

View Article and Find Full Text PDF

Background: Inflammation is a driver of thrombosis, but the phenomenon of thromboinflammation has been defined only recently, bringing together the multiple pathways involved. models can support the development of new therapeutics targeting the endothelium and also assess the existing immunomodulatory drugs, such as hydroxychloroquine, in modulating the inflammation-driven endothelial prothrombotic phenotype.

Objectives: To develop a model for thrombin generation (TG) on the surface of human endothelial cells (ECs) to assess pro/antithrombotic properties in response to inflammation.

View Article and Find Full Text PDF

Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.

Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.

Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.

View Article and Find Full Text PDF

Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments.

Bioact Mater

May 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.

Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.

View Article and Find Full Text PDF

Introduction: Systemic sclerosis is a complex disease characterized by the fibrosis and vasculopathy.

Aim: We aimed to assess scleroderma by examining involucrin, an early terminal differentiation marker of epidermal keratinocytes.

Material And Methods: Immunolocalization of involucrin was performed in healthy controls and patients with scleroderma lesions by using an immunofluorescence (IF) assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!