Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To identify intra-lesion imaging heterogeneity biomarkers in multi-parametric Magnetic Resonance Imaging (mpMRI) for breast lesion diagnosis.
Methods: Dynamic Contrast Enhanced (DCE) and Diffusion Weighted Imaging (DWI) of 73 female patients, with 85 histologically verified breast lesions were acquired. Non-rigid multi-resolution registration was utilized to spatially align sequences. Four (4) DCE (2 post-contrast frame, Initial-Enhancement, Post-Initial-Enhancement and Signal-Enhancement-Ratio) and one (1) DWI (Apparent-Diffusion-Coefficient) representations were analyzed, considering a representative lesion slice. 11 1-order-statistics and 16 texture features (Gray-Level-Co-occurrence-Matrix (GLCM) and Gray-Level-Run-Length-Matrix (GLRLM) based) were derived from lesion segments, provided by Fuzzy C-Means segmentation, across the 5 representations, resulting in 135 features. Least-Absolute-Shrinkage and Selection-Operator (LASSO) regression was utilized to select optimal feature subsets, subsequently fed into 3 classification schemes: Logistic-Regression (LR), Random-Forest (RF), Support-Vector-Machine-Sequential-Minimal-Optimization (SVM-SMO), assessed with Receiver-Operating-Characteristic (ROC) analysis.
Results: LASSO regression resulted in 7, 6 and 7 features subsets from DCE, DWI and mpMRI, respectively. Best classification performance was obtained by the RF multi-parametric scheme (Area-Under-ROC-Curve, (AUC) ± Standard-Error (SE), AUC ± SE = 0.984 ± 0.025), as compared to DCE (AUC ± SE = 0.961 ± 0.030) and DWI (AUC ± SE = 0.938 ± 0.032) and statistically significantly higher as compared to DWI. The selected mpMRI feature subset highlights the significance of entropy (1-order-statistics and 2-order-statistics (GLCM)) and percentile features extracted from 2 post-contrast frame, PIE, SER maps and ADC map.
Conclusion: Capturing breast intra-lesion heterogeneity, across mpMRI lesion segments with 1-order-statistics and texture features (GLCM and GLRLM based), offers a valuable diagnostic tool for breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2020.10.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!