The synthesis of high-molecular-weight poly(vinyl ethers) under mild conditions is a significant challenge, since cationic polymerization reactions are highly sensitive to chain-transfer and termination events. We identified a novel and highly effective hydrogen bond donor (HBD)-organic acid pair that can facilitate controlled cationic polymerization of vinyl ethers under ambient conditions with excellent monomer compatibility. Poly(vinyl ethers) of molar masses exceeding 50 kg mol can be produced within 1 h without elaborate reagent purification. Modification of the HBD structure allowed tuning of the polymerization rate, while DFT calculations helped elucidate crucial intermolecular interactions between the HBD, organic acid, and polymer chain end.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145790 | PMC |
http://dx.doi.org/10.1002/anie.202013419 | DOI Listing |
J Phys Chem B
December 2024
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
Background: As modern industrial activities have advanced, the prevalence of microplastics and nanoplastics in the environment has increased, thereby impacting plant growth. Potassium is one of the most crucial nutrient cations for plant biology. Understanding how polyethylene terephthalate (PET) treatment affects potassium uptake will deepen our understanding of plant response mechanisms to plastic pollution.
View Article and Find Full Text PDFChemosphere
December 2024
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China. Electronic address:
Herein, conductive polyaniline (PANI) was chemically polymerized on the surface of a bismuth-based metal-organic framework (Bi-MOF) to form conductive PANI@Bi-MOF composites. FT-IR and PXRD measurements verified the successful production of PANI@Bi-MOF, whereas SEM, TEM, and EDAX mapping demonstrated that PANI was uniformly coated on the surface of Bi-MOF. The resulting PANI@Bi-MOF composites were characterized by cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS), then used to develop a sensitive electrochemical sensor for the detection of lead ions based on differential pulse anodic stripping voltammetry (DPASV).
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Biomedical Sciences, Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, 322 Seoyang-ro, Hwasun, 58128, Republic of Korea.
Advancements in mRNA delivery nanoparticles have significantly improved the potential for treating challenging diseases. Due to the inherent immunogenicity and rapid degradation of mRNA, specialized nanoparticles are required for efficient intracellular uptake, endosomal escape, and protection from lysosomal degradation. Although current methods enable transgene expression but achieving a balance between efficiency and toxicity remains challenging.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
Background: The design of smart, photoactivated nanomaterials for targeted drug delivery systems (DDS) has garnered significant research interest due in part to the ability of light to precisely control drug release in specific cells or tissues with high spatial and temporal resolution. The development of effective light-triggered DDS involves mechanisms including photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement, which permit response to ultraviolet (UV), visible (Vis), and/or Near Infrared (NIR) light. This review explores recent advancements in light-responsive small molecules, polymers, and nanocarriers, detailing their underlying mechanisms and utility for drug delivery and/or imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!