ADP-ribosylation is a protein modification responsible for biological processes such as DNA repair, RNA regulation, cell cycle and biomolecular condensate formation. Dysregulation of ADP-ribosylation is implicated in cancer, neurodegeneration and viral infection. We developed ADPriboDB (adpribodb.leunglab.org) to facilitate studies in uncovering insights into the mechanisms and biological significance of ADP-ribosylation. ADPriboDB 2.0 serves as a one-stop repository comprising 48 346 entries and 9097 ADP-ribosylated proteins, of which 6708 were newly identified since the original database release. In this updated version, we provide information regarding the sites of ADP-ribosylation in 32 946 entries. The wealth of information allows us to interrogate existing databases or newly available data. For example, we found that ADP-ribosylated substrates are significantly associated with the recently identified human protein interaction networks associated with SARS-CoV-2, which encodes a conserved protein domain called macrodomain that binds and removes ADP-ribosylation. In addition, we create a new interactive tool to visualize the local context of ADP-ribosylation, such as structural and functional features as well as other post-translational modifications (e.g. phosphorylation, methylation and ubiquitination). This information provides opportunities to explore the biology of ADP-ribosylation and generate new hypotheses for experimental testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778992 | PMC |
http://dx.doi.org/10.1093/nar/gkaa941 | DOI Listing |
Sci Adv
January 2025
Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.
DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drug and Pingyuan Lab, Henan Normal University, Xinxiang, Henan, 453007, China.
ADP-ribosylation is a complex post-translational modification involved in key physiological processes and associated with various health and disease states. The growing interest in ADP-ribosylation necessitates straightforward and efficient synthetic methods for the preparation of ADP-ribosylated peptides/proteins. In this study, we report a facile reaction between nicotinamide adenine dinucleotide (NAD) and alcohols promoted by a combination of ionic liquids, yielding up to 94 % with α : β ratios ranging from 88 : 12 to 99 : 1 and a switchable configuration selectivity.
View Article and Find Full Text PDFBiochem Soc Trans
December 2024
Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S.A.
Ubiquitination and ADP-ribosylation are two types of post-translational modification (PTM) involved in regulating various cellular activities. In a striking example of direct interplay between ubiquitination and ADP-ribosylation, the bacterial pathogen Legionella pneumophila uses its SidE family of secreted effectors to catalyze an NAD+-dependent phosphoribosyl ubiquitination of host substrates in a process involving the intermediary formation of ADP-ribosylated ubiquitin (ADPR-Ub). This noncanonical ubiquitination pathway is finely regulated by multiple Legionella effectors to ensure a balanced host subjugation.
View Article and Find Full Text PDFHGG Adv
January 2025
Department of Pharmacology, The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
Tetrahedron
December 2024
Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
Protein adenosine diphosphate (ADP)-ribosylation participates in various pivotal cellular events. Its readers and erasers play key roles in modulating ADP-ribosylation-based signaling pathways. Unambiguous assignments of readers and erasers to individual ADP-ribosylated proteins provide insightful knowledge on ADP-ribosylation biology and require the development of tools and technologies for this goal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!