Many objects that we encounter have typical material qualities: spoons are hard, pillows are soft, and Jell-O dessert is wobbly. Over a lifetime of experiences, strong associations between an object and its typical material properties may be formed, and these associations not only include how glossy, rough, or pink an object is, but also how it behaves under force: we expect knocked over vases to shatter, popped bike tires to deflate, and gooey grilled cheese to hang between two slices of bread when pulled apart. Here we ask how such rich visual priors affect the visual perception of material qualities and present a particularly striking example of expectation violation. In a cue conflict design, we pair computer-rendered familiar objects with surprising material behaviors (a linen curtain shattering, a porcelain teacup wrinkling, etc.) and find that material qualities are not solely estimated from the object's kinematics (i.e., its physical [atypical] motion while shattering, wrinkling, wobbling etc.); rather, material appearance is sometimes "pulled" toward the "native" motion, shape, and optical properties that are associated with this object. Our results, in addition to patterns we find in response time data, suggest that visual priors about materials can set up high-level expectations about complex future states of an object and show how these priors modulate material appearance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645227 | PMC |
http://dx.doi.org/10.1167/jov.20.12.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!