Many, but not all, lineage-specific genes can be explained by homology detection failure.

PLoS Biol

Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America.

Published: November 2020

Genes for which homologs can be detected only in a limited group of evolutionarily related species, called "lineage-specific genes," are pervasive: Essentially every lineage has them, and they often comprise a sizable fraction of the group's total genes. Lineage-specific genes are often interpreted as "novel" genes, representing genetic novelty born anew within that lineage. Here, we develop a simple method to test an alternative null hypothesis: that lineage-specific genes do have homologs outside of the lineage that, even while evolving at a constant rate in a novelty-free manner, have merely become undetectable by search algorithms used to infer homology. We show that this null hypothesis is sufficient to explain the lack of detected homologs of a large number of lineage-specific genes in fungi and insects. However, we also find that a minority of lineage-specific genes in both clades are not well explained by this novelty-free model. The method provides a simple way of identifying which lineage-specific genes call for special explanations beyond homology detection failure, highlighting them as interesting candidates for further study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660931PMC
http://dx.doi.org/10.1371/journal.pbio.3000862DOI Listing

Publication Analysis

Top Keywords

lineage-specific genes
24
homology detection
8
detection failure
8
genes
8
genes homologs
8
null hypothesis
8
lineage-specific
6
genes explained
4
explained homology
4
failure genes
4

Similar Publications

Pyrazinamide (PZA) is a key first-line antituberculosis drug that plays an important role in eradicating persister (TB) bacilli and shortening the duration of tuberculosis treatment. However, PZA-resistance is on the rise, particularly among persons with multidrug-resistant (MDR) tuberculosis. This nationwide study was conducted to explore the prevalence of mutations conferring PZA resistance, catalogue mutation diversity, investigate the associations of PZA resistance with specific lineages, examine co-resistance to 13 first- and second-line drugs, and evaluate the diagnostic accuracy of sequencing A and D genes for predicting PZA resistance.

View Article and Find Full Text PDF

Background: HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) is a nucleotide-binding leucine-rich repeat (NLR) protein functioning as a recognition hub to initiate effector-triggered immunity against bacterial pathogens. To initiate defense, ZAR1 associates with different HOPZ-ETI-DEFICIENT 1 (ZED1)-Related Kinases (ZRKs) to form resistosomes to indirectly perceive effector-induced perturbations. Few studies have focused on the phylogenomic characteristics of ZAR1 and ZRK immune gene families and their evolutionary relationships.

View Article and Find Full Text PDF

Background: The cotton-melon aphid, Aphis gossypii Glover, is a polyphagous pest damaging plants across over 100 families. It has multiple host-specialized lineages, including one colonizing Malvaceae (MA) and one colonizing Cucurbitaceae (CU). The mechanisms underlying these host relationships remain unknown.

View Article and Find Full Text PDF

Unlabelled: In vertebrates, germ layer specification represents a critical transition where pluripotent cells acquire lineage-specific identities. We identify the maternal transcription factors Foxi2 and Sox3 to be pivotal master regulators of ectodermal germ layer specification in . Ectopic co-expression of Foxi2 and Sox3 in prospective endodermal tissue induces the expression of ectodermal markers while suppressing mesendodermal markers.

View Article and Find Full Text PDF

Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.

J Mol Evol

January 2025

Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.

Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!