Terahertz (THz) irradiation has been exploited in biomedical applications involving non-invasive manipulation of living cells. We developed an apparatus for studying the effects of THz pulse irradiation on living human induced pluripotent stem cells. The THz pulse of the maximum electric field reached 0.5 MV/cm and was applied for one hour with 1 kHz repetition to the entire cell-culture area, a diameter of 1 mm. RNA sequencing of global gene-expression revealed that many THz-regulated genes were driven by zinc-finger transcription factors. Combined with a consideration of the interactions of metal ions and a THz electric field, these results imply that the local intracellular concentration of metal ions, such as , was changed by the effective electrical force of our THz pulse.

Download full-text PDF

Source

Publication Analysis

Top Keywords

thz pulse
12
human induced
8
induced pluripotent
8
pluripotent stem
8
stem cells
8
electric field
8
metal ions
8
thz
5
terahertz pulse-altered
4
pulse-altered gene
4

Similar Publications

Our recent molecular dynamics simulations of decomposing Alzheimer's disease plaques, under oscillating- and static external electric fields (Os-EEFs and St-EEFs), revealed the superiority of Os-EEF for decomposing plaques consisting of the 7-residue peptide segment. This conclusion is now reinforced by studying the dimers of the short peptides and trimers of the full-length Aβ-42 peptide. Thus, the dispersed peptides obtained following St-EEF applications reformed the plaques once the St-EEF subsided.

View Article and Find Full Text PDF

Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS Heterostructure.

J Phys Chem Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.

View Article and Find Full Text PDF

We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.

View Article and Find Full Text PDF

Space division multiplexing (SDM) with Hermite Gaussian (HG) modes, for instance, can significantly boost the transmission link capacity. However, SDM is not suitable in existing single mode fiber networks, and in long-distance wireless, microwave, THz or optical links, the far-field beam distribution may present a problem. Recently it has been demonstrated, that time domain HG modes can be employed to enhance the link capacity.

View Article and Find Full Text PDF

Polarimetry terahertz imaging of human breast cancer surgical specimens.

J Med Imaging (Bellingham)

November 2024

University of Arkansas, Department of Electrical Engineering and Computer Science, Fayetteville, Arkansas, United States.

Article Synopsis
  • The study focuses on using terahertz (THz) polarimetry imaging to enhance contrast between cancerous tissue and healthy tissue in human breast cancer specimens.
  • It utilizes multiple polarizations to capture how cancerous cells interact differently with THz electric fields compared to healthy cells, aiming for better image clarity.
  • Results show that cross-polarization signals are dependent on tissue orientation, revealing patterns that help differentiate between various tissue types, indicating THz polarimetry's potential for improved imaging in tumor analysis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!