Self-assembly of poly(styrene)--poly(isoprene)--poly(lactide)--poly(styrene) (PS-PI-PLA-PS' or SILS') tetrablock terpolymers, where the volume fractions of the first three blocks are nearly equivalent, was studied both experimentally and using the self-consistent field theory (SCFT). SCFT indicates that addition of the terminal PS' chain to a low-molecular-mass, hexagonally packed cylinders forming, SIL precursor can produce a disordered state due to preferential mixing of the polystyrene end-blocks with the PI and PLA midblocks in the SILS' tetrablock, alleviating the unfavorable contact between the highly incompatible PI and PLA segments. In contrast, SCFT predicts that higher-molar-mass triblock precursors will maintain an ordered morphology upon addition of the terminal PS' block due to stronger overall segregation strengths. These predictions were tested using three sets of SILS' polymers that were synthesized based on three precursor SIL triblock polymers differing in total molar mass (14, 30, and 47 kg mol) and varying the length of the terminal PS' chain. In the lowest-molar-mass set of tetrablock polymers, the shift from order to disorder was observed in the materials at ambient temperature as the molar mass of the terminal PS' block was increased, consistent with SCFT calculations. Disorder with longer S' chain lengths was not found in the two higher-molar-mass polymer sets; the medium-molar-mass set showed both microphase separation and long-range order based on transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS), while the largest of these block polymers microphase separated but showed limited long-range order. The combination of the experimental and theoretical results presented in this work provides insights into the self-assembly of ABCA'-type polymers and highlights potential complications that arise from frustration in accessing well-ordered materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c07543 | DOI Listing |
J Adv Prosthodont
December 2024
Department Prosthetic Dental Sciences, College of Dentistry, Jouf University, Jouf, Saudia Arabia.
Purpose: This study assessed the microgap width and adhesion of three bacterial species in four dental implants with different interlocks under four screwing torques.
Materials And Methods: Ten samples of four implant systems with various interlockings, including full-hexagonal (FHI), cylindrical-conical trilobe-index (TLI), Morse-taper with octagon terminal index (OI), and hexagonal interlock (slip-fit) (HI-SF), were used. The abutments were screwed to the fixtures under torques of 10, 20, 30, and 40 Ncm.
Arch Microbiol
January 2025
Department of Botany, CMS College Kottayam, Kottayam, Kerala, 686001, India.
Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
January 2025
Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan. Electronic address:
The F domain of FF-ATP synthases/ATPases (FF) possesses three catalytic sites on the three αβ interfaces, termed αβ, αβ, and αβ, located mainly on the β subunits. The enzyme also has three non-catalytic ATP-binding sites on the three αβ interfaces, located mainly on the α subunits. When ATP does not bind to the non-catalytic site, FF becomes significantly prone to ADP inhibition, ultimately resulting in the loss of ATPase activity.
View Article and Find Full Text PDFElife
January 2025
IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Ciudad Autonoma de Buenos Aires, Argentina.
Yerba mate (YM, ) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29, Leninskiy Prospect, 119991 Moscow, Russia.
The molecular characteristics and rheological properties of three UHMWPE samples were investigated. The high-temperature GPC method was used for characterizing UHMWPE samples used. The interpretation of the measurement results was based on calibration using the PS standard and the approximation of the PS data by linear and cubic polynomials, as well as on the data for linear PE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!