Identifying the associations between head impact biomechanics and clinical recovery may inform better head impact monitoring procedures and identify athletes who may benefit from early treatments aimed to enhance recovery. The purpose of this study was to test whether head injury biomechanics are associated with clinical recovery of symptom severity, balance, and mental status, as well as symptom resolution time (SRT) and return-to-participation (RTP) time. We studied 45 college American football players (n = 51 concussions) who sustained an incident concussion while participating in a multi-site study. Player race/ethnicity, prior concussion, medical history, position, body mass index, event type, and impact location were covariates in our multivariable analyses. Multivariable negative binomial regression models analyzed associations between our study outcomes and (1) injury-causing linear and rotational head impact severity, (2) season repetitive head impact exposure (RHIE), and (3) injury day RHIE. Median SRT was 6.1 days (IQR 5.8 days, n = 45) and median RTP time was 12.3 days (IQR 7.8 days, n = 36) across our study sample. RTP time was 86% (Ratio 1.86, 95% CI [1.05, 3.28]) longer in athletes with a concussion history. Offensive players had SRTs 49% shorter than defensive players (Ratio 0.51, 95% CI [0.29, 0.92]). Per-unit increases in season RHIE were associated with 22% longer SRT (Ratio 1.22, 95% CI [1.09, 1.36]) but 28% shorter RTP time (Ratio 0.72, 95% CI [0.56, 0.93]). No other head injury biomechanics predicted injury recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-020-02658-y | DOI Listing |
BMC Nephrol
December 2024
Head Doctor of the Dialysis Medical Center LLC, "Nephrocenter", Dovzhenka 3, Kyiv, 03057, Ukraine.
Background: The impact of protein-bound uremic toxins, specifically indoxyl sulfate (IS) on peritoneal dialysis (PD) complications remains controversial. This study aimed to explore the link between serum total IS (tIS) levels, proinflammatory cytokines in serum and peritoneal dialysis effluent (PDE), and PD technique survival.
Methods: In this prospective cohort study, 84 patients were followed up for three years and analyzed.
Virchows Arch
December 2024
Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, CHU Nice, FHU OncoAge, IHU RespirERA, Nice, France.
EGFR status assessment is mandatory for adjuvant decision-making of resected stage IB-IIIA non-squamous non-small cell lung cancer (NS-NSCLC). It is questionable whether single-gene RT-PCR versus next-generation sequencing (NGS) should be used for this evaluation. Moreover, co-occurring mutations have an impact on tumor behavior and may influence future therapeutic decision-making.
View Article and Find Full Text PDFBMJ Open
December 2024
The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, Jiangsu, China
Introduction: Prone positioning with head rotation can influence cerebral haemodynamics, potentially affecting cerebral perfusion and oxygenation. Elderly patients with impaired brain perfusion and oxygenation are at an increased risk of developing postoperative delirium (POD). Despite this, few studies have explored whether head orientation during prone positioning contributes to POD in older adults, an aspect often overlooked by clinicians.
View Article and Find Full Text PDFOtolaryngol Head Neck Surg
December 2024
Department of Otolaryngology-Head and Neck Surgery, University of Miami/Jackson Health System, Miami, Florida, USA.
Apple's new hearing health experience with AirPods Pro 2 was released this Fall of 2024, allowing any user with a compatible iPhone and AirPods Pro 2 to perform hearing tests and use the device as a hearing aid for perceived mild to moderate hearing loss. This innovation may increase accessibility to hearing testing and hearing augmentation for the public but there are many potential drawbacks that will impact hearing loss care. The advent of AirPods Pro 2 and the inevitable arrival of similar devices to the market will alter the clinical practice.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Spanish Philology, University of Málaga, Málaga, Spain.
Nasalance is a valuable clinical biomarker for hypernasality. It is computed as the ratio of acoustic energy emitted through the nose to the total energy emitted through the mouth and nose (eNasalance). A new approach is proposed to compute nasalance using Convolutional Neural Networks (CNNs) trained with Mel-Frequency Cepstrum Coefficients (mfccNasalance).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!