Liquid microbial inoculants have recently received great attention due to their vital roles for sustainable agricultural practices. However, long-term conservation under ambient temperature conditions and deleterious environmental factors might negatively impact microbial cell survival and limit their efficacy in the field. Thus, developing efficient liquid formulation providing prolonged survival of rhizobia in the final product and after an application is crucial. Therefore, this study investigates the effect of various additives on the long-term survival of rhizobia stored in liquid cultures at room temperature (25 °C) for 12 months. Various yeast sucrose media amended with polyvinylpyrrolidone (PVP) or gum arabic as colloidal agents in combination with ectoine (as a compatible solute) and/or glycerol were evaluated. A dramatic decline in viable cell count was obtained in formulas amended only with PVP from Log 8.5 to Log 5 in the first six months and then to Log 1.5 after 12 months. In contrast, rhizobia stored at PVP-based formulas amended with 10 mg L ectoine exhibited almost constant survival level till the end of the storage period. The same trend was obtained using formulas based on gum arabic as a colloidal dispersing agent; however, less decline in cell count using a formula containing gum arabic alone as compared to using PVP. On the other hand, PVP based formulas exhibited higher viscosity compared with another formula. Increased viscosity till the 8th month of storage was achieved in the presence of ectoine indicating the increase of exopolymeric substances production. Electrophoretic protein pattern of rhizobial cells (stored for 12 months) exhibited several low molecular weight protein bands in cells stored in PVP based formula with ectoine as compared to the other treatments. Thus, the amendment of the liquid formulation of rhizobia bioinoculant with PVP plus ectoine not only improved cell survival but also enhanced the culture viscosity and consequently ameliorate the colonization and performance of rhizobial inoculants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-020-02265-z | DOI Listing |
Food Chem
January 2025
School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia. Electronic address:
The study highlights the impact of different carbohydrate-based wall materials on the encapsulation and release of flavors and physicochemical characteristics of spray-dried oleoresin blends. The inlet temperature and the wall material type significantly affected the spray drying yield, and Hi-Cap 100, at 150 °C, produced the highest yield. All the wall materials had high water solubility, and Hi-Cap 100 reported the best wettability.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Science and Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
Strawberry fruits are highly perishable and have a limited shelf life. Therefore, effective methods such as essential oils (EOs) and edible coatings are required to mitigate spoilage and maintain fruit quality during storage. In the current study, Echinophora platyloba EO was extracted and subsequently formulated into a nanoemulsion.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Biomaterials Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran. Electronic address:
RSC Adv
January 2025
Botany and Microbiology Department, Faculty of Science, Al-Azhar University Nasr City Cairo 11884 Egypt
In this study, a nanocomposite based on copper oxide-zinc oxide nanoparticles and Gum Arabic (GA@CuO-ZnO nanocomposite) was successfully synthesized using green method. Characterization results revealed that the prepared nanocomposite appeared at the nanoscale level, showed excellent dispersion, and formed stable colloidal nano-solutions. The bimetallic GA@CuO-ZnO nanocomposite was evaluated for its anticancer, antibacterial, and antifungal properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China. Electronic address:
In this study, a novel nitrogen-doped carbon quantum dot/oxidized gum arabic-gelatin-based fluorescent probe (NAH) was prepared using gelatin (GL) and gum arabic (AG) biomolecules. The primary network structure of this hydrogel consisted of polyacrylamide (PAM), while a secondary network structure was constructed between oxidized gum arabic and gelatin through the reaction of the Schiff base, which significantly enhanced the mechanical properties, the stress and strain of NAH reached 266.47 KPa and 2175.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!