Unlabelled: Hi-C is a common technique for assessing 3D chromatin conformation. Recent studies have shown that long-range interaction information in Hi-C data can be used to generate chromosome-length genome assemblies and identify large-scale structural variations. Here, we demonstrate the use of Hi-C data in detecting mobile transposable element (TE) insertions genome-wide. Our pipeline Hi-C-based TE analyzer (HiTea) capitalizes on clipped Hi-C reads and is aided by a high proportion of discordant read pairs in Hi-C data to detect insertions of three major families of active human TEs. Despite the uneven genome coverage in Hi-C data, HiTea is competitive with the existing callers based on whole-genome sequencing (WGS) data and can supplement the WGS-based characterization of the TE-insertion landscape. We employ the pipeline to identify TE-insertions from human cell-line Hi-C samples.

Availability And Implementation: HiTea is available at https://github.com/parklab/HiTea and as a Docker image.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8599941PMC
http://dx.doi.org/10.1093/bioinformatics/btaa923DOI Listing

Publication Analysis

Top Keywords

hi-c data
20
pipeline identify
8
transposable element
8
element insertions
8
hi-c
8
data
7
hitea
4
hitea computational
4
computational pipeline
4
identify non-reference
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!