Synthesis, characterization and optimization of in vitro properties of NIR-fluorescent cyclic α-MSH peptides for melanoma imaging.

J Mater Chem B

Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.

Published: December 2020

Melanoma are malignant tumors derived from melanocytes being responsible for the majority of skin cancer deaths with an increasing rate of incidence. The Melanocortin-1 receptor (MC1R) has been recognized as a molecular target for melanoma detection. Here, we report on the development and optimization of molecular probes which are based on novel conjugates of near-infrared (NIR) fluorescent indocyanine dyes and an MC1R-targeting peptide intended for optical fluorescence imaging enabling an early, specific, accurate and sensitive diagnosis of malignant melanomas. The introduction of anionic groups into the aromatic ring of the indolenine substructure of the conjugated dyes has shown to result in a strong fluorescence in aqueous solution and a concomitant increase of binding affinities of the peptide conjugates to the target receptor. The length and flexibility of the PEG chain introduced as a linker, as well as the nature of its attachment to the dye also affect the binding affinities, albeit to a lower extent. The conjugates have been successfully applied in the MC1R-specific staining of B16F10 melanoma cells, both in cell cultures and in microtome sections of solid tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb01798aDOI Listing

Publication Analysis

Top Keywords

binding affinities
8
synthesis characterization
4
characterization optimization
4
optimization vitro
4
vitro properties
4
properties nir-fluorescent
4
nir-fluorescent cyclic
4
cyclic α-msh
4
α-msh peptides
4
melanoma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!