Known applications of high energy density materials are impressively vast. Despite this, we argue that energetic materials are still underutilized for common energy purposes due to our inability to control explosive chemical reactions releasing energy from these materials. The situation appears paradoxical as energetic materials (EM) possess massive amounts of energy and, hence, should be most appropriate for applications in many energy-intensive processes. Here, we discover how chemical decomposition reactions can be stimulated with laser excitation and therefore, highly controlled by selectively designing energetic material - metal oxide interfaces with an example of pentaerythritol tetranitrate (PETN)-MgO and trinitrotoluene (TNT)-MgO composite samples. Density functional theory and embedded cluster method calculations were combined with measurements of the optical absorption spectra and laser initiation experiments. We found that the first (1064 nm, 1.17 eV), second (532 nm, 2.33 eV), and third (355 nm, 3.49 eV) laser harmonics, to all of which pure energetic materials are transparent, can be effectively used to trigger explosive reactions in the PETN-MgO samples. We propose a consistent electronic mechanism that explains how specific sub-band optical transitions initiate decomposition chemistry. Also, this selectivity reveals a fundamental difference between materials chemistry at interfaces as we show on examples of PETN and TNT energetic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp04069jDOI Listing

Publication Analysis

Top Keywords

energetic materials
20
materials
8
metal oxide
8
energetic
6
achieving tunable
4
tunable chemical
4
chemical reactivity
4
reactivity photo-initiation
4
photo-initiation energetic
4
materials metal
4

Similar Publications

Filler defects and matrix crosslinking degree are the main factors affecting the interfacial adhesion properties of propellants. Improving adhesion can significantly enhance debonding resistance. In this study, all-atom molecular dynamics (MD) simulations are employed to investigate the interfacial adsorption behavior and mechanisms between ammonium perchlorate (AP) fillers and a poly(3,3-bis-azidomethyl oxetane)-tetrahydrofuran (PBT) matrix.

View Article and Find Full Text PDF

A glycoluril-derived molecular-clip-based supramolecular organic framework (clip-SOF) with intrinsic porosity was prepared. The clip-SOF was used for the adsorption and removal of 2,4,6-trinitrotoluene (TNT) driven by noncovalent interactions. The efficiency of TNT removal by clip-SOFs is up to 88.

View Article and Find Full Text PDF

The increase in industrial waste generation presents a global problem that is a consequence of the needs of modern society. To achieve the goals of the EU Green Deal and to promote the concept of circular economy (CE), the valorization of industrial residues as secondary raw materials offers a pathway to economic, environmental, energetic, and social sustainability. In this respect, Al-containing industrial residues from alumina processing (red mud), thermal power plants (fly ash and bottom ash), and metallurgy (slag), as well as other industries, present a valuable mineral resource which can be considered as secondary raw materials (SRMs) with the potential to be used in construction, supporting the concept of circular economy.

View Article and Find Full Text PDF

Unlabelled: Cytoplasmic proteins must recruit to membranes to function in processes such as endocytosis and cell division. Many of these proteins recognize not only the chemical structure of the membrane lipids, but the curvature of the surface, binding more strongly to more highly curved surfaces, or 'curvature sensing'. Curvature sensing by amphipathic helices is known to vary with membrane bending rigidity, but changes to lipid composition can simultaneously alter membrane thickness, spontaneous curvature, and leaflet symmetry, thus far preventing a systematic characterization of lipid composition on such curvature sensing through either experiment or simulation.

View Article and Find Full Text PDF

Context: Nitrocellulose, widely used in energetic materials, is prone to thermal and chemical degradation, compromising safety and performance. Stabilizers are molecules used in the composition of nitrocellulose-based propellants to inhibit the autocatalytic degradation process that produces nitrous gases and free nitric acids. Curcumin, (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, known for its antioxidant properties and a potential green stabilizer, was investigated using Density Functional Theory (DFT) focusing on its interaction with nitrogen dioxide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!