Contrasting Behaviors of FA and MA Cations in PbBr.

J Phys Chem Lett

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India.

Published: November 2020

It is known that the organic units in hybrid halide perovskites are free to rotate, but it is not clear if this freedom is of any relevance to the structure-property relationship of these compounds. We have employed quasi-elastic neutron scattering using two different spectrometers, thus providing a wide dynamic range to investigate the cation dynamics in methylammonium lead bromide (MAPbBr) and formamidinium lead bromide (FAPbBr) over a large temperature range covering all known crystallographic phases of these two compounds. Our results establish a plastic crystal-like phase forming above 30 K within the orthorhombic phase of MAPbBr related to 3-fold rotations of MA units around the C-N axis with an activation energy, , of ∼27 meV, which has no counterpart in the FA compound. MA exhibits an additional 4-fold orientational motion of the whole molecule via rotation of the C-N axis itself with an of ∼68 meV common for the high-temperature tetragonal and cubic phases. In contrast, the FA compound exhibits only an isotropic orientational motion of the whole FA unit with ≈ 106 meV within the orthorhombic phase and a substantially reduced common of ∼62 meV for the high-temperature tetragonal and cubic phases. Our results suggest that the rotational dynamics of the organic units, crystallographic phases, and physical properties of these compounds are intimately connected.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c02688DOI Listing

Publication Analysis

Top Keywords

organic units
8
lead bromide
8
crystallographic phases
8
orthorhombic phase
8
c-n axis
8
compound exhibits
8
orientational motion
8
high-temperature tetragonal
8
tetragonal cubic
8
cubic phases
8

Similar Publications

Polyimide (PI)-based gas separation membranes are of great interest in the field of H purification owing to their good thermal stability, chemical stability, and mechanical properties. Among polyimide-based membranes, intrinsically microporous polyimides are easily soluble in common organic solvents, showing great potential for fabricating hollow fiber gas separation membranes. However, based on the solution-diffusion model, improving the free volume or the movability of polymer chains can improve gas permeability, but would result in poor thermal stability.

View Article and Find Full Text PDF

Nanoparticles of highly porous metal-organic frameworks (MOFs) are some of the most exciting nanomaterials under development, with potential applications that range from biomedicine and catalysis to adsorption technologies. However, our synthetic methodologies to functionalize and manipulate MOF nanoparticles (NPs) are less well developed than they might be. Here we create MOF NPs derivatized with hydrazone units on their exterior, enabling chemospecific reversible dynamic covalent modification of structures on the external surface.

View Article and Find Full Text PDF

This study evaluated a novel ex situ passive sampling biomimetic extraction (BE) method to estimate toxic potency in sediments. Gas chromatography with flame ionization detection (GC-FID) analysis of polydimethylsiloxane fibers equilibrated with field sediments was used to quantify bioavailable polyaromatic hydrocarbons (PAHs) and other unresolved, site-specific contaminant mixtures. This method is biomimetic because contaminants partition to the fiber based on hydrophobicity and abundance, and GC-FID quantification accounts for all constituents absorbed to the fiber that may contribute to toxicity.

View Article and Find Full Text PDF

Design strategies and biomedical applications of organic NIR-IIb fluorophores.

Chem Commun (Camb)

January 2025

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

The introduction of fluorescence imaging (FLI) in near-infrared II sub-channels (NIR-IIb, 1500-1700 nm) has revolutionized the ability to explore complex patho-physiological settings . Despite the transformative potentials, the development of organic NIR IIb dyes encounters considerable difficulties, and only a limited number of such fluorophores have been developed so far. This review systematically introduces design strategies of organic NIR-IIb fluorophores classified by molecular scaffolds, mainly including cyanine dyes and D-A-D small molecule dyes.

View Article and Find Full Text PDF

Rhodanine Substitution of Asymmetric Nonfullerene Acceptors for High-Performance Organic Solar Cells.

ACS Appl Mater Interfaces

January 2025

College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.

Asymmetric substitution is acknowledged as a straightforward yet potent approach for the optimization of small molecule acceptors (SMAs), thereby enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs). In this work, we have successfully engineered and synthesized a novel asymmetric SMA, designated as Y6-R, which features a rhodanine-terminated inner side-chain. In devices with PM6 as the polymer donor, the asymmetric Y6-R demonstrated an impressive PCE of 18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!