SARS-CoV-2 is the cause of the ongoing Coronavirus disease 19 (COVID-19) pandemic around the world causing pneumonia and lower respiratory tract infections. In understanding the SARS-CoV-2 pathogenicity and mechanism of action, it is essential to depict the full repertoire of expressed viral proteins. The recent biological studies have highlighted the leader protein Nsp1 of SARS-CoV-2 importance in shutting down the host protein production. Besides, it still enigmatic how Nsp1 regulates for translation. Here we report the novel structure of Nsp1 from SARS-CoV-2 in complex with the SL1 region of 5'UTR of SARS-CoV-2, and its factual interaction is corroborated with enzyme kinetics and experimental binding affinity studies. The studies also address how leader protein Nsp1 of SARS-CoV-2 recognizes its self RNA toward translational regulation by further recruitment of the 40S ribosome. With the aid of molecular dynamics and simulations, we also demonstrated the real-time stability and functional dynamics of the Nsp1/SL1 complex. The studies also report the potential inhibitors and their mode of action to block viral protein/RNA complex formation. This enhance our understanding of the mechanism of the first viral protein Nsp1 synthesized in the human cell to regulate the translation of self and host. Understanding the structure and mechanism of SARS-CoV-2 Nsp1 and its interplay with the viral RNA and ribosome will open the arena for exploring the development of live attenuated vaccines and effective therapeutic targets for this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c02818DOI Listing

Publication Analysis

Top Keywords

protein nsp1
12
nsp1 sars-cov-2
12
therapeutic targets
8
leader protein
8
sars-cov-2
7
nsp1
6
structure sars-cov-2
4
sars-cov-2 nsp1/5'-untranslated
4
nsp1/5'-untranslated region
4
complex
4

Similar Publications

Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen affecting the pig industry, is an RNA virus with high genetic diversity. In this study, 12,299 clinical samples were collected from northern China during 2021-2023 to investigate the molecular epidemiological characteristics and genetic evolution of PRRSV. All samples were screened using qRT-PCR and further analyzed through gene and whole-genome sequencing.

View Article and Find Full Text PDF

Despite being mostly neglected in structural biology, the C-terminal Regions (CTRs) are studied to be multifunctional in humans as well as in viruses. Previously, SARS-CoV-2 Spike and NSP1 proteins' CTRs are observed to be disordered, and experimental evidence showed a gain of structure properties in different physiological environments. In this line, we have investigated the structural dynamics of CTR (residues 38-61) of SARS-CoV-2 ORF6 protein, disrupting bidirectional transport between the nucleus and cytoplasm.

View Article and Find Full Text PDF

The segmented flavivirus Alongshan virus reduces mitochondrial mass by degrading STAT2 to suppress the innate immune response.

J Virol

December 2024

Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.

Alongshan virus (ALSV) is a newly discovered pathogen in the family, characterized by a unique multi-segmented genome that is distantly related to the canonical flaviviruses. Understanding the pathogenic mechanism of this emerging segmented flavivirus is crucial for the development of effective intervention strategies. In this study, we demonstrate that ALSV can infect various mammalian cells and induce the expression of antiviral genes.

View Article and Find Full Text PDF

The non-structural protein 1 (nsp1) of SARS-CoV-2 plays a key role in host innate immune evasion. We identified two deletion variants (Δ82-85 and Δ83-86) in the N-terminal region of the nsp1 of a SARS-CoV-2 BA.5.

View Article and Find Full Text PDF

Structure-function mapping and mechanistic insights on the SARS CoV2 Nsp1.

Protein Sci

December 2024

ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.

Non-structural protein 1 (Nsp1) is a key component of the infectious process caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), responsible for the COVID-19 pandemic. Our previous data demonstrated that Nsp1 can degrade both RNA and DNA in the absence of the ribosome, a process dependent on the metal ions Mn, Ca, or Mg (Salgueiro et al., SARS-CoV2 Nsp1 is a metal-dependent DNA and RNA endonuclease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!