Key Points: Mitochondrial dysfunction is known to occur in diabetic phenotypes including type 1 and 2 diabetes mellitus. The incidence of gestational diabetes mellitus (GDM) is increasing and defined as the onset of a diabetic phenotype during pregnancy. The role of placental mitochondria in the aetiology of GDM remains unclear and is an emerging area of research. Differing mitochondrial morphologies within the placenta may influence the pathogenesis of the disorder. This study observed mitochondrial dysfunction in GDM placenta when assessing whole tissue. Upon further investigation into mitochondrial isolates from the cytotrophoblast and syncytiotrophoblast, mitochondrial dysfunction appears exaggerated in syncytiotrophoblast. Assessing mitochondrial populations individually enabled the determination of differences between cell lineages of the placenta and established varying levels of mitochondrial dysfunction in GDM, in some instances establishing significance in pathways previously inconclusive or confounded when assessing whole tissue. This research lays the foundation for future work into mitochondrial dysfunction in the placenta and the role it may play in the aetiology of GDM.
Abstract: Mitochondrial dysfunction has been associated with diabetic phenotypes, yet the involvement of placental mitochondria in gestational diabetes mellitus (GDM) remains inconclusive. This is in part complicated by the different mitochondrial subpopulations present in the two major trophoblast cell lineages of the placenta. To better elucidate the role of mitochondria in this pathology, this study examined key aspects of mitochondrial function in placentas from healthy pregnancies and those complicated by GDM in both whole tissue and isolated mitochondria. Mitochondrial content, citrate synthase activity, reactive oxygen species production and gene expression regulating metabolic, hormonal and antioxidant control was examined in placental tissue, before examining functional differences between mitochondrial isolates from cytotrophoblast (Cyto-Mito) and syncytiotrophoblast (Syncytio-Mito). Our study observed evidence of mitochondrial dysfunction across multiple pathways when assessing whole placental tissue from GDM pregnancies compared with healthy controls. Furthermore, by examining isolated mitochondria from the cytotrophoblast and syncytiotrophoblast cell lineages of the placenta we established that although both mitochondrial populations were dysfunctional, they were differentially impacted. These data highlight the need to consider changes in mitochondrial subpopulations at the feto-maternal interface when studying pregnancy pathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/JP280593 | DOI Listing |
FASEB J
January 2025
Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China.
Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain.
The underlying mechanisms explaining the differential course of SARS-CoV-2 infection and the potential clinical consequences after COVID-19 resolution have not been fully elucidated. As a dysregulated mitochondrial activity could impair the immune response, we explored long-lasting changes in mitochondrial functionality, circulating cytokine levels, and metabolomic profiles of infected individuals after symptoms resolution, to evaluate whether a complete recovery could be achieved. Results of this pilot study evidenced that different parameters of aerobic respiration in lymphocytes of individuals recuperated from a severe course lagged behind those shown upon mild COVID-19 recovery, in basal conditions and after simulated reinfection, and they also showed altered glycolytic capacity.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2024
Curtin University, Curtin Medical Research Institute (Bentley, WA, AUSTRALIA).
Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239.
Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared to the offspring regular diet-fed mothers (Off-RD).
View Article and Find Full Text PDFCells
January 2025
Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada.
Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!