This work investigates the influence of Ag (1 wt%) on the mechanical properties, in vitro and in vivo corrosion, and biocompatibility of Fe-35Mn. The microstructure of Fe-35Mn-1Ag possesses a uniform dispersion of discrete silver particles. Slight improvements in compressive properties are attributed to enhanced density and low porosity volume. Fe-35Mn-1Ag exhibits good in vitro and in vivo corrosion rate of Fe-35Mn due to an increase in microgalvanic corrosion. Gas pockets, which originate from an inflammatory response to the implants, are observed in the rats after 4 weeks implantation but are undetectable after 12 weeks. No chronic toxicity is observed with the Fe-35Mn-1Ag, suggesting acceptable in vivo biocompatibility. The high corrosion rate of the alloy triggers an increased level of nonadverse tissue inflammatory responses 4 weeks after implantation, which subsequently subsides at 12 weeks. The Fe-35Mn-1Ag displays properties that are suitable for orthopedic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202000667 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!