V2O5 is of interest as a Mg intercalation electrode material for Mg batteries, both in its thermodynamically stable layered polymorph (α-V2O5) and in its metastable tunnel structure (ζ-V2O5). However, such oxide cathodes typically display poor Mg insertion/removal kinetics, with large voltage hysteresis. Herein, we report the synthesis and evaluation of nanosized (ca. 100 nm) ζ-V2O5 in Mg-ion cells, which displays significantly enhanced electrochemical kinetics compared to microsized ζ-V2O5. This effect results in a significant boost in stable discharge capacity (130 mA h g-1) compared to bulk ζ-V2O5 (70 mA h g-1), with reduced voltage hysteresis (1.0 V compared to 1.4 V). This study reveals significant advancements in the use of ζ-V2O5 for Mg-based energy storage and yields a better understanding of the kinetic limiting factors for reversible magnesiation reactions into such phases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr05060aDOI Listing

Publication Analysis

Top Keywords

voltage hysteresis
8
ζ-v2o5
5
enhanced charge
4
charge storage
4
storage nanometric
4
nanometric ζ-vo
4
ζ-vo electrolytes
4
electrolytes v2o5
4
v2o5 interest
4
interest intercalation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!