To control the activity of photodynamic agents by pH, an electron donor-connecting cationic porphyrin, -(,-dimethyl-4-aminophenyl)-tris(-methyl--pyridinio)porphyrin (DMATMPyP), was designed and synthesized. The photoexcited state (singlet excited state) of DMATMPyP was deactivated through intramolecular electron transfer under a neutral condition. The p of the protonated DMATMPyP was 4.5, and the fluorescence intensity and singlet oxygen-generating activity increased under an acidic condition. Furthermore, the protonation of DMATMPyP enhanced the biomolecule photooxidative activity through electron extraction. Photodamage of human serum albumin (HSA) was observed under a neutral condition because a hydrophobic HSA environment can reverse the deactivation of photoexcited DMATMPyP. However, an HSA-damaging mechanism of DMATMPyP under a neutral condition was explained by singlet oxygen production. Therefore, it is indicated that the protein photodamaging activity of DMATMPyP goes into an OFF state under a neutral hypoxic condition. Under an acidic condition, the HSA photodamaging quantum yield by DMATMPyP through electron extraction could be preserved in the presence of a singlet oxygen quencher. Photooxidation of nicotinamide adenine dinucleotide by DMATMPyP was also enhanced under an acidic condition. This study demonstrated the concept of using pH to control photosensitizer activity via inhibition of the intramolecular electron transfer deactivation and enhancement of the oxidative activity through the electron extraction mechanism. Specifically, biomolecule oxidation through electron extraction may play an important role in photodynamic therapy to treat tumors under a hypoxic condition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594313 | PMC |
http://dx.doi.org/10.1021/acsomega.0c04303 | DOI Listing |
Nanoscale
January 2025
Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium.
Many applications of nanocrystals rely on their use in light detection and emission. In recent years, nanocrystals with more relaxed carrier confinement, including so-called 'bulk' and 2D implementations, have made their stake. In such systems, the charge carriers generated after (photo-)excitation are spread over a semi-continuous density of states, behaviour controlled by the carrier temperature .
View Article and Find Full Text PDFCureus
December 2024
Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND.
Background Toothbrush manufacturers commonly use bristle materials such as nylon, polybutylene terephthalate, polypropylene, polyethylene terephthalate, boar hair, bamboo, carbon fiber, silicone, polylactic acid, or their modifications such as Curen. Nylon filaments have long been demonstrated to be durable and are widely used, but not much is known regarding the performance of Curen filaments compared to nylon filaments. This in vitro study compared the stiffness, abrasion potential, abrasion resistance, and bristle surface changes of Curen and nylon filaments.
View Article and Find Full Text PDFDrug Target Insights
January 2025
Department of Pharmacology, University of Free State, Bloemfontein - South Africa.
Introduction: biofilm formation is a significant contributor to antifungal resistance, necessitating new treatment strategies. Lin., a traditional herbal remedy, has shown promise in combating microbial infections.
View Article and Find Full Text PDFNarra J
December 2024
Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia.
is an alga with high fucoxanthin, phlorotannin, fucoidan, sterol, and astaxanthin. The silver nanoparticles of (AgNPs-Fv) are expected to have high antioxidant, anti-collagenase, and antibacterial activities. The aim of this study was to characterize the distribution and size of AgNPs-Fv and determine their antioxidant, anti-collagenase, and antibacterial activities.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Mineralogical Society of Antwerp, Boterlaarbaan 225, 2100 Deurne, Belgium.
ConspectusWhile photochromic natural sodalites, an aluminosilicate mineral, were originally considered as curiosities, articles published in the past ten years have radically changed this perspective. It has been proven that their artificial synthesis was easy and allowed compositional tuning. Combined with simulations, it has been shown that a wide range of photochromic properties were achievable for synthetic sodalites (color, activation energy, reversibility, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!