Objective: To expand the genetic spectrum of hereditary spastic paraparesis by a treatable condition and to evaluate the therapeutic effects of biotin supplementation in an adult patient with biotinidase deficiency (BD).
Methods: We performed exome sequencing (ES) in a patient with the clinical diagnosis of complex hereditary spastic paraparesis. The patient was examined neurologically, including functional rating scales. We performed ophthalmologic examinations and metabolic testing.
Results: A 41-year-old patient presented with slowly progressive lower limb spasticity combined with optic atrophy. He was clinically diagnosed with complex hereditary spastic paraparesis. The initial panel diagnostics did not reveal the disease-causing variant; therefore, ES was performed. ES revealed biallelic pathogenic variants in the gene leading to the genetic diagnosis of BD. BD is an autosomal recessive metabolic disorder causing a broad spectrum of neurologic symptoms, optic atrophy, and dermatologic abnormalities. When treatment is initiated in time, symptoms can be prevented or reversed by biotin supplementation. After diagnosis in our patient, biotin supplementation was started. One year after the onset of therapy, symptoms remained stable with slight improvement of sensory deficits.
Conclusions: These findings expand the genetic spectrum of the clinical diagnosis of complex hereditary spastic paraparesis by a treatable disease. Today, most children with BD should have been identified via newborn screening to start biotin supplementation before the onset of symptoms. However, adult patients and those born in countries without newborn screening programs for BD are at risk of being missed. Therapeutic success depends on early diagnosis and presymptomatic treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577526 | PMC |
http://dx.doi.org/10.1212/NXG.0000000000000525 | DOI Listing |
Cureus
January 2025
Department of Internal Medicine, Section of Neurology, Chong Hua Hospital, Cebu, PHL.
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disease caused by retrograde degeneration of the corticospinal tract and posterior columns, which presents with progressive bilateral leg weakness and spasticity. HSP is inherited in an autosomal dominant pattern involving over 80 causative genes. The recently identified causative gene is the ubiquitin-associated protein 1 ()gene, which is associated with juvenile-onset pure spastic paraplegia-80 (SPG80).
View Article and Find Full Text PDFJ Clin Neurol
January 2025
Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Korea.
Introduction: COQ4 mutation often leads to a fatal multi-system disease in infants. Recently, it was reported that the biallelic COQ4 variants may be a potential cause of hereditary spastic paraplegia (HSP). This study aims to describe the clinical features and genotype of the COQ4 associated hereditary spastic paraplegia (HSP).
View Article and Find Full Text PDFHum Genome Var
January 2025
Progenie Molecular S.L.U, Valencia, Spain.
Two ERLIN2 variants (NM_007175.8:c.660delA and NM_007175.
View Article and Find Full Text PDFEur J Neurol
January 2025
Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!