Ashwagandha ( L. Dunal.) is an important "" of Ayurveda. The roots are extensively used as an adaptogen and for different health issues. Anti-inflammatory, antioxidant, and immune-stimulating effects of Ashwagandha are well-documented. The present study aimed to evaluate the clinical efficacy of Ashwagandha root extract as an adaptogen against various types of stress in horses. A total of 24 Kathiawari horses were selected and randomly divided into four groups. All the horses were provided with normal feed and water . Group 1 (G1) was treated as the control group, and the horses were given a normal diet. Group 2 (G2), Group 3 (G3), and Group 4 (G4) horses received varying doses of Ashwagandha root extract along with the normal diet. All the animals were subjected to different types of stress including exercise-induced stress, separation, and noise stress on three different days and evaluated for various hematological, biochemical, hormonal, and immunological parameters. Over the 21 days, a statistically significant ( < 0.05) increase in total erythrocyte count, total leucocyte count, hemoglobin content, lymphocyte percentage, reduced glutathione, and superoxide dismutase activities was observed. A statistically significant ( < 0.05) decrease in cortisol, epinephrine, glucose, triglycerides, creatinine, IL-6, alanine aminotransferase, and aspartate aminotransferase was observed in the Ashwagandha treated groups (G2, G3, and G4) when compared to the control group (G1). The results suggest that Ashwagandha root extract has potent hemopoietic, antioxidant, adaptogenic, and immune-stimulant properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552885 | PMC |
http://dx.doi.org/10.3389/fvets.2020.541112 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
This study explores the development of electrospun nanofibers incorporating bioactive compounds from (Ashwagandha) root extract, focusing on optimizing extraction conditions and nanofiber composition to maximize biological activity and application potential. Using the Design of Experiment (DoE) approach, optimal extraction parameters were identified as 80% methanol, 70 °C, and 60 min, yielding high levels of phenolic compounds and antioxidant activity. Methanol concentration emerged as the critical factor influencing phytochemical properties.
View Article and Find Full Text PDFReprod Sci
January 2025
Department of Zoology, Faculty of Science, University of Allahabad, Prayagraj, 211002, UP, India.
As global change threatens avian biodiversity, understanding species responses to environmental perturbations due to radiation emitted by enormous increase in the application of wireless communication is very urgent. The study investigates the effect of MW radiation on redox balance, stress level, male fertility and the efficacy of Withania somnifera (WS) root extract (100 mg/kg body weight) orally administered in 8 weeks old mature male Japanese quail exposed to 2.4 GHz MW radiation for 2 h/day for 30 days with power density = 0.
View Article and Find Full Text PDFDis Aquat Organ
January 2025
ICAR Research Complex for NEH Region, Umiam, Meghalaya PIN-793103, India.
The present study evaluated the immunomodulatory and disease resistance-enhancing effects of dietary supplementation of Withania somnifera root powder in Labeo rohita (22.10 ± 3.30 g, 12.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Food Science R&D Center, Kolmar BNH, Seoul 06800, Korea.
Ashwagandha () is a popular herb in Ayurveda, the traditional medicine system in India. It is known to exert stress-mitigating properties and has been extensively studied for its safety and efficacy in various disorders. This study assessed the effects of Ashwagandha root extract (ARE) on stress in rats.
View Article and Find Full Text PDFSteroids
December 2024
Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India. Electronic address:
Physalis alkekengi L. is recognized as a significant source of various secondary metabolites, particularly C steroidal lactones known as withanolides and physalins, renowned for their therapeutic properties with a rich history in traditional medicine. In this study, we characterized the sequences of key downstream genes (PaFPPS, PaSQS, PaSQE, PaCAS, PaHYD1, and PaDWF5-1) involved in the biosynthesis of withanolides, marking the first characterization of these genes in P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!