Background: Polyethylene (PE) particles produced by wear of the acetabular insert are thought to cause osteolysis and thereby aseptic loosening of the implant in total hip arthroplasty (THA). As highly cross-linked polyethylene (HXLPE) is presumed to give lower wear rates, studies are needed to confirm this.

Aim: To compare the wear of REXPOL, a HXPLE, with conventional PE within the first five years after implantation using Roentgen stereophotogrammetric analysis (RSA).

Methods: Patients were randomised to receive either a HXLPE (REXPOL) or a conventional PE insert during primary THA. RSA images were obtained directly postoperative and after 6 wk, 12 wk, 6 mo, 12 mo, 24 mo and five years. Functional outcomes were assessed using the Hip Injury and Osteoarthritis Outcome Score and Harris Hip Score at baseline and five years after surgery.

Results: The HXLPE (REXPOL) showed less wear in the latero-medial direction. Significant wear rates of conventional PE were seen in the latero-medial and center-proximal direction and in volume and corrected volume, whereas the REXPOL did not show these outcomes over time. Improvement from baseline in functional outcome did not significantly differ.

Conclusion: Total 3D wear is less in THAs inserted with a REXPOL inlay than a conventional PE inlay after five years. This study confirms, for the first, that the REXPOL HXLPE inlay is preferred to standard PE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582113PMC
http://dx.doi.org/10.5312/wjo.v11.i10.442DOI Listing

Publication Analysis

Top Keywords

highly cross-linked
8
total hip
8
hip arthroplasty
8
roentgen stereophotogrammetric
8
stereophotogrammetric analysis
8
wear rates
8
hxlpe rexpol
8
wear
6
rexpol
6
conventional
5

Similar Publications

Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.

View Article and Find Full Text PDF

A hybrid coating made of poly (methyl methacrylate) with SiO2-TiO2 particles (PMMA/SiO2-TiO2) has been developed for use as a coating on nanosatellites, evaluating its resistance to high vacuum by quantifying its weight loss. The coating was applied on an Al 7075 aluminum substrate used for the aerospace sector. PMMA/SiO2-TiO2 hybrid coatings were prepared using sol-gel reaction in situ assisted with sonochemistry.

View Article and Find Full Text PDF

Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials.

View Article and Find Full Text PDF

Introduction: The RM Pressfit vitamys is an uncemented, titanium particle-coated, isoelastic monoblock cup made of vitamin E blended highly cross-linked polyethylene. We addressed the following questions: (1) What are the clinical and (2) radiographic outcomes 10 years after implantation? (3) What is the revision rate?

Methods: In this prospective observational study in a tertiary care centre we investigated all consecutive cases of total hip replacement with the RM Pressfit vitamys cup between September 2009 and November 2011. It was implanted in 162 hips, 49.

View Article and Find Full Text PDF

Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!