We present a parallel robot mechanism and the constitutive laws that govern the deformation of its constituent soft actuators. Our ultimate goal is the real-time motion-correction of a patient's head deviation from a target pose where the soft actuators control the position of the patient's cranial region on a treatment machine. We describe the mechanism, derive the stress-strain constitutive laws for the individual actuators and the inverse kinematics that prescribes a given deformation, and then present simulation results that validate our mathematical formulation. Our results demonstrate deformations consistent with our radially symmetric displacement formulation under a finite elastic deformation framework.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593887 | PMC |
http://dx.doi.org/10.1109/icra40945.2020.9197007 | DOI Listing |
Sci Rep
January 2025
Guizhou Energy Group Co., Ltd., Guiyang, 550081, Guizhou, China.
To investigate the statistical laws of acoustic emission energy (AEE) avalanche dynamics of sandstone under varying fracture lengths and dip angles, as well as to determine the relationship between acoustic emission (AE) parameters and damage variables, we studied the mechanical properties and AE characteristics of sandstone with a single fracture subjected to uniaxial compression with the aid of the Shimadzu AG-IS test system and the PCI-2 AE system. The AEE characteristics of fractured sandstone under load were analyzed based on the statistical method of avalanche dynamics, with emphasis on AEE distribution, aftershock sequence, and waiting time distribution. The Weibull distribution function that incorporates a correction coefficient β was employed to optimize the Weibull parameters based on the strain equivalent hypothesis theory, which led to the establishment of a statistical damage constitutive model for fractured rock.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Computational Neuroscience Group, Universitat Pompeu Fabra, 08005 Barcelona, Spain.
In the Kolmogorov Theory of Consciousness, algorithmic agents utilize inferred compressive models to track coarse-grained data produced by simplified world models, capturing regularities that structure subjective experience and guide action planning. Here, we study the dynamical aspects of this framework by examining how the requirement of tracking natural data drives the structural and dynamical properties of the agent. We first formalize the notion of a using the language of symmetry from group theory, specifically employing Lie pseudogroups to describe the continuous transformations that characterize invariance in natural data.
View Article and Find Full Text PDFAdv Model Simul Eng Sci
January 2025
Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zürich, 8092 Switzerland.
We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations.
View Article and Find Full Text PDFLangmuir
January 2025
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Surface-active agents (surfactants) release potential energy as they migrate from one of two adjacent fluids onto their fluid-fluid interface, a process that profoundly impacts the system's energy and entropy householding. The continuum thermodynamics underlying such a surfactant-enriched binary-fluid system has not yet been explored comprehensively. In this article, we present a mathematical description of such a system, in terms of balance laws, equations of state, and permissible constitutive relations and interface conditions, that satisfies the first and second law of thermodynamics.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
Center of Mathematics, University of the Republic Uruguay, Montevideo, Uruguay.
The finite-element method (FEM) is a well-established procedure for computing approximate solutions to deterministic engineering problems described by partial differential equations. FEM produces discrete approximations of the solution with a discretisation error that can be quantified with a posteriori error estimates. The practical relevance of error estimates for biomechanics problems, especially for soft tissue where the response is governed by large strains, is rarely addressed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!