Crowding Effects of Polystyrene Nanoparticles on Lactate Dehydrogenase Activity in Hydra Attenuata.

J Xenobiot

Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, QC H2Y 2E7, Canada.

Published: September 2020

AI Article Synopsis

  • Plastics release potential harmful nanoparticles (NPs) into the environment, which can impact biological processes.
  • The study investigated how polystyrene NPs affect lactate dehydrogenase (LDH) enzyme activity in the lab and in hydra, revealing that NPs create crowded conditions that alter enzyme performance.
  • Findings indicated that the presence of NPs reduced the fractal dimension (fD) of LDH reactions, which corresponds to changes in viscosity and suggests increased anaerobic metabolism in organisms exposed to these nanoparticles.

Article Abstract

Plastics pervade our environment and potentially release important quantities of plastic nanoparticles (NPs) from degradation in the environment. The purpose of this study was to examine the crowding effects of polystyrene NPs on lactate dehydrogenase (LDH) in vitro and following exposure to . First, LDH activity was measured in vitro in the presence of filamentous (F-)actin and NPs (50 and 100 nm diameter) to determine changes in viscosity and the fractal kinetics of LDH. The fractal dimension (fD) was also determined using the rescaled range analysis procedure. Secondly, these changes were examined in hydra exposed to NPs for 96h to concentrations of NPs. The data revealed that the addition of F-actin increased the rate of LDH at low substrate (pyruvate) concentrations compared to LDH alone with a gradual decrease in the rate with the addition of pyruvate, which is characteristic of the fractal behavior of enzymes in crowded environments. The addition of 50 and 100 nm NPs also produced these changes, which suggest that NPs could change the space properties of the LDH reaction. The fD was reduced to 0.85 and 0.91 with 50 and 100 nm NPs compared to 1.093 with LDH alone. Decrease in the fD was related with increased amplitudes and frequency in viscosity waves in the reaction media. Exposure of hydra to NPs confirmed the increase in LDH activity and the fD was significantly correlated with LDH activity (r = -0.5). Correction of LDH activity (residuals) still revealed an increase in LDH activity in hydra suggesting increased anaerobic metabolism by NPs. In conclusion, the presence of NPs in the intracellular space decreased the fD, which could influence LDH activity in organisms exposed to NPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584143PMC
http://dx.doi.org/10.3390/jox10010002DOI Listing

Publication Analysis

Top Keywords

ldh activity
24
nps
12
ldh
12
crowding effects
8
effects polystyrene
8
lactate dehydrogenase
8
activity hydra
8
exposed nps
8
100 nps
8
increase ldh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!