Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Esophageal cancer (ESCA) is the eighth most common cause of cancer-associated mortality in humans. An increasing number of studies have demonstrated that microRNAs (miRs) serve important roles in mediating tumor initiation and progression. miR-454-3p has been found to be involved in the development of various human malignancies; however, little is known about the role of miR-454-3p in esophageal cancer. In the present study, the protein and gene expression levels of miR-454-3p in ESCA tissues and cells were downregulated compared with adjacent normal tissues and normal human esophageal epithelial cells. Additionally, miR-454-3p downregulation resulted in improved survival rates in patients with ESCA, and miR-454-3p overexpression significantly suppressed cell proliferation, migration and invasion and promoted apoptosis in four ESCA cell lines (EC9706, ECA109, TE-1 and TE-8). It was found that miR-454-3p overexpression inhibited the expression of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) at the protein and mRNA expression levels. Furthermore, it was demonstrated that miR-454-3p inhibited ESCA cell proliferation, migration and apoptosis by targeting IGF2BP1 via the ERK and AKT signaling pathways in a subcutaneous xenograft tumor mouse model. These results showed that miR-454-3p functioned as an important tumor suppressor in ESCA by targeting IGFBP1. Therefore, miR-454-3p may be a novel prognostic biomarker and therapeutic target for patients with ESCA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590437 | PMC |
http://dx.doi.org/10.3892/ol.2020.12223 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!