Mosquitoes are one of the deadliest animals on earth because of their ability to transmit a wide range of human pathogens. Traditional mosquito control methods use chemical insecticides, but with dwindling long-term effectiveness and negative effects on the environment, microbial forms of control have become common alternatives. The insecticide subspecies (Bti) is the most popular of these alternatives, although it can also have direct effects on lowering environmental biodiversity and indirect effects on food-web relationships in the ecosystems where it is deployed. In addition, microbial control agents that impede pathogen development or transmission from mosquito to human are under investigation, including and , but unexpected interactions with mosquito gut bacteria can hinder their effectiveness. Improved characterization of mosquito gut bacterial communities is needed to determine the taxa that interfere with microbial controls and their effectiveness in wild populations. This mini-review briefly discusses relationships between mosquito gut bacteria and microbial forms of control, and the challenges in ensuring their success.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575760PMC
http://dx.doi.org/10.3389/fgene.2020.504354DOI Listing

Publication Analysis

Top Keywords

mosquito gut
12
microbial control
8
microbial forms
8
forms control
8
gut bacteria
8
control
5
mosquito
5
challenges microbial
4
control mosquito-borne
4
mosquito-borne diseases
4

Similar Publications

The Chikungunya virus (CHIKV) is a mosquito-borne virus with a long history of recurring epidemics transmitted through mosquitoes. The rapid spread of CHIKV has intensified the need for potent vaccines. Escherichia coli (), a vital part of human gut microbiota, is utilized in recombinant DNA technology for cloning.

View Article and Find Full Text PDF

Cell wall components of gut commensal bacteria stimulate peritrophic matrix formation in malaria vector mosquitoes through activation of the IMD pathway.

PLoS Biol

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.

The peritrophic matrix (PM) acts as a physical barrier that influences the vector competence of mosquitoes. We have previously shown that gut microbiota promotes PM formation in Anopheles stephensi, although the underlying mechanisms remain unclear. In this study, we identify that the cell wall components of gut commensal bacteria contribute to PM formation.

View Article and Find Full Text PDF

Bacteriophage diversity and novelty revealed by metaviromic analysis of the gut virome in the medicinal Blaps rynchopetera.

Microb Pathog

February 2025

Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, China. Electronic address:

The medicinal beetle Blaps rynchopetera is recognized for its antibacterial, anti-inflammatory, and immune-regulating properties. This study utilized metaviromics technology to systematically characterize the viral community within the gut of B. rynchopetera through high-throughput sequencing of gut contents, with a specific focus on the composition of its bacteriophage community.

View Article and Find Full Text PDF

Symbiotic Bacteria: Wolbachia, Midgut Microbiota in Mosquitoes and Their Importance for Vector Prevention Strategies.

Microb Ecol

December 2024

Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India.

Mosquito-borne illnesses pose a significant threat to eradication under existing vector management measures. Chemo-based vector control strategies (use of insecticides) raise a complication of resistance and environmental pollution. Biological control methods are an alternative approach to overcoming this complication arising from insecticides.

View Article and Find Full Text PDF

Vector mosquitoes are well-adapted to habitats in urban areas, including belowground infrastructure such as stormwater systems. As a major source of larval habitat in population centers, control of larval populations in stormwater catch basins is an important tool for control of vector-borne disease. Larval development and adult phenotypes driving vectorial capacity in mosquitoes are modulated by the larval gut microbiota, which is recruited from the aquatic environment in which larvae develop.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!