Background And Aim: For years, people have used sodium nitrite as a food preservative. This study determined the effect of okra ( L.) pod methanol extract (OPME) on mice with hepatotoxicity induced by sodium nitrite. The flavonoid and total phenolic levels, serum biochemistry, and liver histology were examined.

Materials And Methods: Green okra pod extraction was performed using ethanol methanol solvent. Thirty adult male BALB/c mice (8-10 weeks, ~30 g) were divided into six groups: Normal control, negative control (sodium nitrite 50 mg/kg BW exposure), and treatment groups (sodium nitrite exposure and OPME at doses of 50, 100, 200, and 400 mg/kg BW). Subsequently, they were exposed to sodium nitrite and administered multiple doses of OPME for 19 days by gavage. After that, serum was used for biochemical evaluation, and liver histological analysis was performed. All data were statistically analyzed (α=0.05).

Results: All doses of OPME reduced the levels of nitric oxide (NO), malondialdehyde (MDA), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). In this research, both superoxide dismutase (SOD) and catalase (CAT) levels increased in all OPME-administered treatments. All doses also reduced necrotic cells, proportion of swollen cells, and inflammation in liver histological analysis. The results of this study showed that OPME exerted hepatoprotective effects by lowering MDA, NO, ALT, and AST levels. It also improved SOD and CAT levels and recovered damaged liver tissue to its normal state. The optimal dose of OPME was 50-100 mg/kg BW.

Conclusion: OPME has potential as a natural hepatoprotective agent against sodium nitrite exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566251PMC
http://dx.doi.org/10.14202/vetworld.2020.1815-1821DOI Listing

Publication Analysis

Top Keywords

sodium nitrite
24
okra pod
8
nitrite exposure
8
doses opme
8
liver histological
8
histological analysis
8
cat levels
8
sodium
7
opme
7
nitrite
6

Similar Publications

Enrichment of a heterotrophic nitrifying and aerobic denitrifying bacterial consortium: Microbial community succession and nitrogen removal characteristics and mechanisms.

Bioresour Technol

December 2024

Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China. Electronic address:

This study cultivated a bacterial consortium (S60) from landfill leachate that exhibited effective heterotrophic nitrification and aerobic denitrification (HN-AD) properties. Under aerobic conditions, the removal of NH-N reached 100 % when the S60 consortium utilised NH-N either as the sole nitrogen source or in combination with NO-N and NO-N. Optimal HN-AD performance was achieved with sodium acetate as a carbon source and a pH of 7.

View Article and Find Full Text PDF

Background: Diabetes mellitus (DM) is one of the most common metabolic diseases in the world. Studies have shown that nitric oxide (NO) promotes re-epithelialization and stimulates angiogenesis and neovascularization. This study aimed to investigate the effect of exogenous NO on diabetic wound healing.

View Article and Find Full Text PDF

Interactions of a PFOS/sodium nitrite mixture in Chinese mitten crab (Eriocheir sinensis): Impacts on survival, growth, behavior, energy metabolism and hepatopancreas transcriptome.

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China. Electronic address:

Perfluorooctanesulfonic acid (PFOS) and sodium nitrite may have complex adverse effects on aquatic animals. This study assessed the interactive effects of PFOS and sodium nitrite on Chinese mitten crab (Eriocheir sinensis). A 2 × 3 factorial experiment with 0, 0.

View Article and Find Full Text PDF

Continuous flow synthesis of alkynes from isoxazolones.

Org Biomol Chem

December 2024

University College Dublin, School of Chemistry, Science Centre South, D04 N2E5 Dublin, Ireland.

The development of a continuous flow approach for the generation of alkynes from isoxazolones under diazotisation conditions is reported. The underlying transformation has been known for several decades; however, in batch mode, it is plagued by variable yields, excessive use of sodium nitrite and limited scalability due to its exothermic nature and the release of copious amounts of toxic nitroxide gases. The presented flow approach overcomes these limitations and delivers various alkyne products in residence times of less than 1 minute with productivities of 2 g h.

View Article and Find Full Text PDF

The impact of sodium nitrite and intermittent fasting on neurofilament and tau protein phosphorylation, and spatial learning in rat hippocampus.

Exp Brain Res

December 2024

Department of Biochemistry and Molecular Biology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, P. R. China.

In recent years, the influence of dietary-related factors on neurodegenerative diseases has received considerable attention in the academic community, notably involving the food additive sodium nitrite (NaNO) and intermittent fasting behavior. However, the effects of NaNO and intermittent fasting on spatial learning and memory have not been thoroughly investigated. This study conducted a controlled experiment to explore the impact of NaNO and intermittent fasting on the hyperphosphorylation of hippocampal neurofilament (NF) and tau proteins, as well as spatial learning and memory in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!