Design, synthesis and biological evaluation of novel osthole-based derivatives as potential neuroprotective agents.

Bioorg Med Chem Lett

Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. Electronic address:

Published: December 2020

AI Article Synopsis

  • - A total of 26 new compounds based on the osthole skeleton were created and tested for their ability to protect cells from oxidative stress, inflammation, and neurotoxicity related to Alzheimer's disease, using various assays.
  • - Among these, OST7 and OST17 showed significantly improved antioxidative and anti-inflammatory effects compared to the original osthole, with OST7 demonstrating strong neuroprotective activity at low concentrations.
  • - Further analysis through molecular docking and structure-activity relationship studies suggested that certain chemical groups enhance the neuroprotective properties of these compounds, indicating their potential as new treatments for Alzheimer's disease.

Article Abstract

A total of 26 compounds based on osthole skeleton were designed, synthesized. Their cytoprotective abilities of antioxidation, anti-inflammation and Aβ(Amyloid β-protein 42)-induced neurotoxicity were evaluated by MTT assays. Mechanism of the action of selected compounds were investigated by molecular docking. AlogP, logS and blood-brain barrier (BBB) permeability of all these compounds were simulated by admetSAR. Most of the compounds showed better antioxidative and anti-inflammatory activities compared with osthole, especially OST7 and OST17. The compound OST7 showed relative high activity in neuroprotection against HO (45.7 ± 5.5%), oxygen glucose deprivation (64.6 ± 4.8%) and Aβ (61.4 ± 5.2%) at a low concentration of 10 μM. EC of selected compounds were measured in both HO and OGD induced cytotoxicity models. Moreover, NO inhibiting ability of OST17(50.4 ± 7.1%) already surpassed the positive drug indomethacin. The structure activity relationship study indicated that introduction of piperazine group, tetrahydropyrrole group and aromatic amine group might be beneficial for enhancement of osthole neuroprotective properties. Molecular docking explained that the reason OST7 exhibited relatively stronger neuroprotection against Aβ because of the greater area of interactions between molecule and target protein. OST7 and OST17 both provided novel methods to investigate osthole as anti-AD drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2020.127633DOI Listing

Publication Analysis

Top Keywords

selected compounds
8
molecular docking
8
ost7 ost17
8
compounds
5
design synthesis
4
synthesis biological
4
biological evaluation
4
evaluation novel
4
novel osthole-based
4
osthole-based derivatives
4

Similar Publications

Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.

View Article and Find Full Text PDF

Stereocontrolled construction of tetrasubstituted olefins has been an attractive issue yet remains challenging for synthetic chemists. In this manuscript, alkynyl selenides, when treated with ArBCl, are subject to an exclusive 1,1-carboboration, affording tetrasubstituted alkenes with excellent levels of E-selectivity. Detailed mechanistic studies, supported by DFT calculations, elucidates the role of selenium in this 1,1-addition process.

View Article and Find Full Text PDF

Burn-related neuropathic pain (BRNP) can arise following burn-induced nerve damage, affects approximately 6% of burned human patients and can result in chronic pain. Although widely studied in humans, data on BRNP or its treatment in animals is lacking. A 4-year-old domestic shorthair cat was presented with an infected, non-healing wound suspected to be a caustic burn.

View Article and Find Full Text PDF

Pharmacological Characterization of the Novel Selective Kappa Opioid Receptor Agonists 10-Iodo-Akuammicine and 10-Bromo-Akuammicine in Mice.

Neuropharmacology

January 2025

Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA. Electronic address:

Akuammicine (AKC), an indole alkaloid, is a kappa opioid receptor (KOR) full agonist with a moderate affinity. 10-Iodo-akuammicine (I-AKC) and 10-Bromo-akuammicine (Br-AKC) showed higher affinities for the KOR with K values of 2.4 and 5.

View Article and Find Full Text PDF

Exploring the potential active components and mechanisms of Tetrastigma hemsleyanum against ulcerative colitis based on network pharmacology in LPS-induced RAW264.7 cells.

J Ethnopharmacol

January 2025

College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou 310018, People's Republic of China. Electronic address:

Ethnopharmacological Relevance: Ulcerative colitis (UC) is a chronic form of inflammatory bowel disease, which current treatments often show limited effectiveness. Ferroptosis, a newly recognized form of programmed cell death has been implicated in UC pathogenesis, suggesting that it may be viable therapeutic target. Tetrastigma hemsleyanum (TH) has shown potential anti-UC effects, though it is unclear whether its therapeutic benefits are mediated by ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!