Energy, generated by the mitochondrial oxidative phosphorylation system, is transferred to the cytosol across the mitochondrial outer membrane (MOM), through the voltage-dependent anion channels (VDACs). The role of the VDAC's voltage-gating process to control the transfer of ATP, creatine phosphate and other negatively charged metabolites across MOM might be crucial for the cell energy metabolism regulation. However, it depends on the probability of the outer membrane potential (OMP) generation by a currently undefined mechanism that has usually been considered doubtful, based on the assumption that VDACs always stay in the electrically open state. Nevertheless, computational analysis of various possible metabolically-dependent mechanisms of OMP generation suggests that MOM is not a "coarse sieve", but in fact it functions as an electrical gatekeeper of cell energy metabolism, due to a probable OMP-dependent VDAC's gating. OMP generation could also be involved in the control of cell death resistance and mechanisms of various diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2020.183493 | DOI Listing |
Membranes (Basel)
December 2024
LIME Laboratory, CNRS, MADIREL (UMR 7246), Campus St Jérôme, Aix Marseille University, 13013 Marseille, France.
Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Unit of Chemical Technologies, Technology Centre of Catalonia, Eurecat, 43007 Tarragona, Spain.
The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
PSI Center for Energy and Environmental Sciences, 5232 Villigen PSI, Switzerland.
The impeding ban on per- and polyfluoroalkyl substances (PFAS) prompted researchers to focus on hydrocarbon-based materials as constituents of next-generation proton exchange membranes (PEMs) for polymer electrolyte fuel cells (PEFCs). Here, we report on the fuel cell performance and durability of fluorine-lean PEMs prepared by the post-sulfonation of co-grafted α-methylstyrene (AMS) and 2-methylene glutaronitrile (MGN) monomers into preirradiated 12 µm polyvinylidene fluoride (PVDF) base film. The membranes were subjected to two distinctly different accelerated stress test (AST) protocols performed at open-circuit voltage (OCV): the US Department of Energy-similar chemical AST (90 °C, 30% relative humidity (RH), H/air, 1 bar), developed originally for perfluoroalkylsulfonic acid (PFSA) membranes, and the high relative humidity AST (80 °C, 100% RH, H/O, 2.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Graduate School of Science and Technology for Innovation, Yamaguchi University (YU), 2-16-1 Tokiwadai, Ube 755-8611, Japan.
To investigate efficient operating conditions for bipolar membrane electrodialysis (BMED), a comparison of current efficiency () and power intensity () was conducted using different anion-exchange membranes (AEMs) and salt solutions (NaCl and NaSO) as feed solutions in BMED. The results indicated that was higher and was lower for a commercial proton-blocking AEM (ACM) than for a standard AEM (ASE) when NaCl was used. This is because ASE has a higher water content than ACM, leading to greater H permeability, which reduces .
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Laboratory of Photoactive Nanocomposite Materials, Saint Petersburg State University, 199034 Saint-Petersburg, Russia.
In this study, we explore the charge transfer mechanism between WO and CuO in heterostructured WO/CuO electrodes and in a WO||CuO tandem photoelectrochemical cell. The physical-chemical characterizations of the individual WO and CuO electrodes and the heterostructured WO/CuO electrode by XRD, XPS, and SEM methods confirm the successful formation of the target systems. The results of photoelectrochemical studies infer that in both the heterostructured WO/CuO electrode and WO||CuO tandem photoelectrochemical cell, the major mechanism of charge transfer between WO and CuO is a realization of the Z-scheme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!