Releases of oil and gas (OG) wastewaters can have complex effects on stream-water quality and downstream organisms, due to sediment-water interactions and groundwater/surface water exchange. Previously, elevated concentrations of sodium (Na), chloride (Cl), barium (Ba), strontium (Sr), and lithium (Li), and trace hydrocarbons were determined to be key markers of OG wastewater releases when combined with Sr and radium (Ra) isotopic compositions. Here, we assessed the persistence of an OG wastewater spill in a creek in North Dakota using a combination of geochemical measurements and modeling, hydrologic analysis, and geophysical investigations. OG wastewater comprised 0.1 to 0.3% of the stream-water compositions at downstream sites in February and June 2015 but could not be quantified in 2016 and 2017. However, OG-wastewater markers persisted in sediments and pore water for 2.5 years after the spill and up to 7.2-km downstream from the spill site. Concentrations of OG wastewater constituents were highly variable depending on the hydrologic conditions. Electromagnetic measurements indicated substantially higher electrical conductivity under the bank adjacent to a seep 7.2 km downstream from the spill site. Geomorphic investigations revealed mobilization of sediment is an important contaminant transport process. Labile Ba, Ra, Sr, and ammonium (NH) concentrations extracted from sediments indicated sediments are a long-term reservoir of these constituents, both in the creek and on the floodplain. Using the drivers of ecological effects identified at this intensively studied site we identified 41 watersheds across the North Dakota landscape that may be subject to similar episodic inputs from OG wastewater spills. Effects of contaminants released to the environment during OG waste management activities remain poorly understood; however, analyses of Ra and Sr isotopic compositions, as well as trace inorganic and organic compound concentrations at these sites in pore-water provide insights into potentials for animal and human exposures well outside source-remediation zones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142909DOI Listing

Publication Analysis

Top Keywords

oil gas
8
isotopic compositions
8
north dakota
8
downstream spill
8
spill site
8
wastewater
6
geochemical geophysical
4
geophysical indicators
4
indicators oil
4
gas wastewater
4

Similar Publications

Carbon Felts Uniformly Modified with Bismuth Nanoparticles for Efficient Vanadium Redox Flow Batteries.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.

The integration of intermittent renewable energy sources into the energy supply has driven the need for large-scale energy storage technologies. Vanadium redox flow batteries (VRFBs) are considered promising due to their long lifespan, high safety, and flexible design. However, the graphite felt (GF) electrode, a critical component of VRFBs, faces challenges due to the scarcity of active sites, leading to low electrochemical activity.

View Article and Find Full Text PDF

The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10-15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control.

View Article and Find Full Text PDF

Preparation and Performance Evaluation of CO Foam Gel Fracturing Fluid.

Gels

December 2024

Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China.

The utilization of CO foam gel fracturing fluid offers several significant advantages, including minimal reservoir damage, reduced water consumption during application, enhanced cleaning efficiency, and additional beneficial properties. However, several current CO foam gel fracturing fluid systems face challenges, such as complex preparation processes and insufficient viscosity, which limit their proppant transport capacity. To address these issues, this work develops a novel CO foam gel fracturing fluid system characterized by simple preparation and robust foam stability.

View Article and Find Full Text PDF

Long-term polymer flooding exacerbates reservoir heterogeneity, intensifying intra- and inter-layer conflicts, which makes it difficult to recover the remaining oil. Therefore, further improvement in oil recovery after polymer flooding is essential. In this study, a weak gel system was successfully synthesized, and possesses a distinct network structure that becomes more compact as the concentration of partially hydrolyzed polyacrylamide increases.

View Article and Find Full Text PDF

A recrosslinkable CO-resistant branched preformed particle gel (CO-BRPPG) was developed for controlling CO injection conformance, particularly in reservoirs with super-permeable channels. Previous work focused on a millimeter-sized CO-BRPPG in open fractures, but its performance in high-permeability channels with pore throat networks remained unexplored. This study used a sandpack model to evaluate a micro-sized CO-BRPPG under varying conditions of salinity, gel concentration, and pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!