Bivalve metamorphosis is a developmental transition from a free-living larva to a benthic juvenile (spat), regulated by a complex interaction of neurotransmitters and neurohormones such as L-DOPA and epinephrine (catecholamine). We recently suggested an N-Methyl-D-aspartate (NMDA) receptor pathway as an additional and previously unknown regulator of bivalve metamorphosis. To explore this theory further, we successfully induced metamorphosis in the Pacific oyster, Crassostrea gigas, by exposing competent larvae to L-DOPA, epinephrine, MK-801 and ifenprodil. Subsequently, we cloned three NMDA receptor subunits CgNR1, CgNR2A and CgNR2B, with sequence analysis suggesting successful assembly of functional NMDA receptor complexes and binding to natural occurring agonists and the channel blocker MK-801. NMDA receptor subunits are expressed in competent larvae, during metamorphosis and in spat, but this expression is neither self-regulated nor regulated by catecholamines. In-situ hybridisation of CgNR1 in competent larvae identified NMDA receptor presence in the apical organ/cerebral ganglia area with a potential sensory function, and in the nervous network of the foot indicating an additional putative muscle regulatory function. Furthermore, phylogenetic analyses identified molluscan-specific gene expansions of key enzymes involved in catecholamine biosynthesis. However, exposure to MK-801 did not alter the expression of selected key enzymes, suggesting that NMDA receptors do not regulate the biosynthesis of catecholamines via gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2020.10.008 | DOI Listing |
Sheng Li Xue Bao
December 2024
State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
At present, the problem of drug addiction treatment mainly lies in the high relapse rate of drug addicts. Addictive drugs will bring users a strong sense of euphoria and promote drug seeking. Once the drug is withdrawn, there will be withdrawal symptoms such as strong negative emotions and uncomfortable physical reactions.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
To summarise the clinical characteristics, radiological features, treatments and prognosis of patients with myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) overlapped with NMDA receptor (NMDAR) encephalitis. We retrospectively analysed patients who exhibited dual positivity for MOG antibodies and NMDAR antibodies in serum/CSF from Jan 2018 to Jun 2023. Ten patients with MOGAD and NMDAR encephalitis were enrolled.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
Background: Seizures, including status epilepticus (SE), are common in anti-NMDA receptor encephalitis (NMDARE). We aimed to describe clinical and electrographic features of patients with seizures with NMDARE, determine factors associated with SE, and describe long-term seizure outcomes.
Methods: We retrospectively identified patients with seizures in the setting of NMDARE treated at inpatient Mayo Clinic sites during the acute phase of encephalitis between October 2008 and March 2023.
Front Neurosci
December 2024
Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, United States.
Recent successes in the identification of biomarkers and therapeutic targets for diagnosing and managing neurological diseases underscore the critical need for cutting-edge biobanks in the conduct of high-caliber translational neuroscience research. Biobanks dedicated to neurological disorders are particularly timely, given the increasing prevalence of neurological disability among the rising aging population. Translational research focusing on disorders of the central nervous system (CNS) poses distinct challenges due to the limited accessibility of CNS tissue pre-mortem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!