Identification of key genes and biological pathways in lung adenocarcinoma via bioinformatics analysis.

Mol Cell Biochem

Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, P. R. China.

Published: February 2021

AI Article Synopsis

  • Lung adenocarcinoma (LUAD) is a major cause of cancer deaths, and this study used bioinformatics to analyze public datasets to identify key genes involved in LUAD.
  • The analysis found 50 upregulated and 87 downregulated genes among three datasets, with 22 core genes linked to reduced survival rates identified through protein-protein interaction networks and various statistical tools.
  • Five key genes related to the cell cycle (CCNB1, BUB1B, CDC20, TTK, and MAD2L1) were highlighted, along with their association with specific drugs that could inform treatment strategies for LUAD.

Article Abstract

Lung adenocarcinoma (LUAD) accounts for the majority of cancer-related deaths worldwide. Our study identified key LUAD genes and their potential mechanism via bioinformatics analysis of public datasets. GSE10799, GSE40791, and GSE27262 microarray datasets were retrieved from the Gene Expression Omnibus (GEO) database. The RobustRankAggreg package was used to perform a meta-analysis, and 50 upregulated genes and 87 downregulated genes overlapped in three datasets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Furthermore, protein-protein interaction (PPI) networks of the differentially expressed genes (DEGs) were built by the Search Tool for the Retrieval of Interacting Genes (STRING) and 22 core genes were identified by Molecular Complex Detection (MCODE) and visualized with Cytoscape. Subsequently, these core genes were analyzed by the Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis (GEPIA). The results showed that all 22 genes were significantly associated with reduced survival rates. For GEPIA, the expression of only one gene was not significantly different between LUAD tissues and normal tissues. A KEGG pathway enrichment reanalysis of the 21 genes identified five key genes (CCNB1, BUB1B, CDC20, TTK, and MAD2L1) in the cell cycle pathway. Finally, the Comparative Toxicogenomics Database (CTD) website was used to explore the relationship between these key genes and certain drugs. Based on the bioinformatics analysis, five key genes were identified in LUAD, and drugs closely associated these genes can provide clues for the treatment and prognosis of LUAD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-020-03959-5DOI Listing

Publication Analysis

Top Keywords

key genes
16
genes
15
bioinformatics analysis
12
genes identified
12
lung adenocarcinoma
8
identified key
8
gene expression
8
kegg pathway
8
pathway enrichment
8
core genes
8

Similar Publications

Plant Coumarin Metabolism-Microbe Interactions: An Effective Strategy for Reducing Imidacloprid Residues and Enhancing the Nutritional Quality of Pepper.

J Agric Food Chem

December 2024

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China.

Imidacloprid (IMI) stress positively correlates with the potential of coumarins to alleviate abiotic stress. However, little is known about the pathways and mechanisms by which coumarin reduces the IMI residue by regulating plant secondary metabolism and plant-microbe interactions. This study examined the impact of coumarin on the uptake, translocation, and metabolism of IMI in pepper plants by modulating the signal molecule levels and microbial communities in the rhizosphere and phyllosphere.

View Article and Find Full Text PDF

Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.

Appl Microbiol Biotechnol

December 2024

Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.

View Article and Find Full Text PDF

Researchers have repurposed several existing anti-inflammatory drugs as potential antifungal agents in recent years. So, this study aimed to investigate the effects of anti-inflammatory drugs on the growth, biofilm formation, and expression of genes related to morphogenesis and pathogenesis in Candida albicans. The minimum inhibitory concentration (MIC) of anti-inflammatory drugs was assessed using the broth microdilution method.

View Article and Find Full Text PDF

(1) Background and aim: Aloe arborescens Mill. (A. arborescens) is one of the most widely distributed species in the genus Aloe and has garnered widespread recognition for its anticancer properties.

View Article and Find Full Text PDF

Super-enhancer Activates Master Transcription Factor NR3C1 Expression and Promotes 5-FU Resistance in Gastric Cancer.

Adv Sci (Weinh)

December 2024

Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Poor response to 5-fluorouracil (5-FU) remains an obstacle in the treatment of gastric cancer (GC). Super enhancers (SEs) are crucial for determining tumor cell survival under drug pressure. SE landscapes related to 5-FU-resistance are mapped to GC using chromatin immunoprecipitation-sequencing (ChIP-Seq).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!