Inflammatory bowel disease (IBD) is a chronic idiopathic disorder causing inflammation in the gastro-intestinal tract, which is lack of effective drug targets and medications. To identify novel therapeutic agents against consistent targets, we exploited a systems pharmacology-driven framework that incorporates drug-target networks of natural product and IBD disease genes. Our in silico approach found that Ligustilide (LIG), one of the major active components of Angelica acutiloba and Cnidium Officinale, potently attenuated IBD. The following in vivo and in vitro results demonstrated that LIG prevented experimental mice colitis induced by dextran sulfate sodium (DSS) via suppressing inflammatory cell infiltration, the activity of MPO and iNOS, and the expression and production of IL-1β, IL-6, and TNF-α. Subsequently, the network analysis helped to validate that LIG alleviated colitis by inhibiting NF-κB and MAPK/AP-1 pathway through activating PPARγ, which were further confirmed in RAW 264.7 cells and bone marrow-derived macrophages in vitro. In summary, this study reveals that LIG activated PPARγ to inhibit the activation of NF-κB and AP-1 signaling thus eventually alleviated DSS-induced colitis, which has promising activities and may serve as a candidate for the treatment of IBD.Graphical abstract This study suggested novel computational and experimental pharmacology approaches to identify potential IBD therapeutic agents by exploiting polypharmacology of natural products. We demonstrated that LIG could attenuate inflammation in IBD by inhibiting NF-κB and AP-1 pathways via PPARγ activation to reduce the expression of pro-inflammatory cytokines in macrophages. These findings offer comprehensive pre-clinical evidence that LIG may serve as a promising candidate for IBD therapy in the future. Graphical headlights: 1. Systems pharmacology uncovered Ligustilide attenuates experimental colitis in mice. 2. Network-based analysis predicted the mechanism of Ligustilide against IBD, which was validated by inhibiting PPARγ-mediated inflammation pathways. 3. Ligustilide activated PPARγ to inhibit NF-κB and AP-1 activation thus eventually alleviated DSS-induced colitis.4. Ligustilide has promising activities and may serve as a candidate for the treatment of IBD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10565-020-09563-z | DOI Listing |
Neurol Res
January 2025
Department of Sport Sciences, Zand Institute of Higher Education, Shiraz, Iran.
Objectives: The aim of this study was to investigate the effect of eight weeks of aerobic training (AT) and vitamin C supplementation (VC) on apoptotic markers in hippocampus tissue of AD rats treated with trimethyltin (TMT).
Materials And Methods: In this experimental study, 32 Sprague- Dawley rats (mean age: 14-18 months and mean weight 270-320 g) were treated with (10 mg/kg) TMT and divided into 4 groups including: 1) ADcontrol, 2) VC, 3) AT and 4) AT+VC groups. In order to investigate the effects of AD induction on research variables, 8 healthy rats selected as healthy control group (HC).
Immunol Rev
January 2025
Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation.
View Article and Find Full Text PDFArch Dermatol Res
December 2024
Department of Dermatology, Jinshan Hospital of Fudan University, Shanghai, 201508, China.
This study explores the protective role of Atractylodin (ATN) on ultraviolet-B (UVB) radiation-exposed oxidative damage and photoaging responses in human epidermal keratinocytes (HaCaT). In vitro, experiments involved subjecting HaCaT cells to UVB radiation (50 mJ/cm) for a 24 h incubation period, leading to cell death, increased reactive oxygen species (ROS), and DNA damaged lesion (8-Oxo Gunosine). ATN treatment effectively mitigated cell toxicity, ROS generation, and 8-Oxo Gunosine in UVB-exposed HaCaT cells.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia.
Quercetin is abundant in plants and has notable pharmacological properties for skin health. This review aims to comprehensively evaluate the effects of quercetin on skin-related issues, adhering to the PRISMA guidelines and analyzing studies from ScienceDirect, Web of Science, Scopus, and PubMed. Of the 1,398 studies identified, 65 studies met the criteria for meta-analysis.
View Article and Find Full Text PDFNeurochem Int
December 2024
Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan. Electronic address:
Previous studies have shown that celecoxib or NSAID may paradoxically induce cyclooxygenase-2 (COX-2) expression and trigger inflammation-like responses in airway smooth muscle cells and renal mesangial cells. Despite the extensive research on celecoxib, its atypical biological effect on the induction of COX-2 in astroglial cells within the central nervous system (CNS) remains unexplored. In the present study, we investigated the impact of celecoxib on COX-2 and Glial Fibrillary Acidic Protein (GFAP) expression and explored the mechanisms underlying celecoxib-regulated COX-2 expression in cortical astrocytes of rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!