Developing salt-tolerant crop varieties is one of the important approaches to cope with increasing soil salinization worldwide. In this study, a diversity panel of 323 wheat accessions and 150 doubled haploid lines were phenotyped for salt-responsive morphological and physiological traits across two growth stages. The comprehensive salt tolerance of each wheat accession was evaluated based on principal component analysis. A total of 269 associated loci for salt-responsive traits and/or salt tolerance indices were identified by genome-wide association studies using 395 675 single nucleotide polymorphisms, among which 22 overlapping loci were simultaneously identified by biparental quantitative trait loci mapping. Two novel candidate genes ROOT NUMBER 1 (TaRN1) and ROOT NUMBER 2 (TaRN2) involved in root responses to salt stress fell within overlapping loci, showing different expression patterns and a frameshift mutation (in TaRN2) in contrasting salt-tolerant wheat genotypes. Moreover, the decline in salt tolerance of Chinese wheat varieties was observed from genetic and phenotypic data. We demonstrate that a haplotype controlling root responses to salt stress has been diminished by strong selection for grain yield, which highlights that linkage drag constrains the salt tolerance of Chinese wheat. This study will facilitate salt-tolerant wheat breeding in terms of elite germplasm, favorable alleles and selection strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/eraa500 | DOI Listing |
<b>Background and Objective:</b> The biodiversity of rice cultivars, including local rice from North Sulawesi, represents a potential source of germplasm for fulfilling national food needs. A few publications related to the characteristics of salinity stress resistance in rice cultivars, including local rice from North Sulawesi. This study aimed to examine the morphological response to salinity stress at the germination phase in eight rice cultivars cultivated in North Sulawesi, Indonesia.
View Article and Find Full Text PDFData Brief
February 2025
Department of Biology, Allama Iqbal Open University, Islamabad, Pakistan.
Plants are colonized by a vast array of microorganisms that outstrip plant cell densities and genes, thus referred to as plant's second genome or extended genome. The microbial communities exert a significant influence on the vigor, growth, development and productivity of plants by supporting nutrient acquisition, organic matter decomposition and tolerance against biotic and abiotic stresses such as heat, high salt, drought and disease, by regulating plant defense responses. The rhizosphere is a complex micro-ecological zone in the direct vicinity of plant roots and is considered a hotspot of microbial diversity.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Engineering Research Center of National Forestry and Grassland Administration for Rosa Roxburghii, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.
RrUNE12 binds to the RrGGP2 promoter to facilitate biosynthesis of AsA in Rosa roxburghii fruit. Furthermore, RrUNE12 upregulates antioxidant-related genes and maintains ROS homeostasis, thereby improving tolerance to salt stress. L-ascorbic acid (AsA) plays an essential role in stress defense as a major antioxidant in plant cells.
View Article and Find Full Text PDFTransgenic Res
January 2025
Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
To explore the effects of salt-tolerance gene accumulation on salt tolerance in transgenic plant, we used four types of plant expression vector (N27, N28, N29, and N30) carrying mtlD, mtlD + gutD, mtlD + gutD + BADH, mtlD + gutD + BADH + sacB genes respectively, to transform tobacco through Agrobacterium-mediated method. Transgenic lines were identified through polymerase chain reaction (PCR) detection. Transgenic lines and non-transgenic plant (CK) were subjected to 6‰ sodium chloride solution stress; then, fluorescence quantitative PCR (FQ-PCR) and salt tolerance indexes were used to assess characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!