Characterization of alginate-capped nanosilver by fractal and entropy analysis on its transmission electron microphotographs.

Micron

Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore , Tamil Nadu, 632014, India. Electronic address:

Published: January 2021

The study employs conventional techniques and quantitative image analysis tools to characterize alginate-capped nanosilver synthesized by green methods. Sodium Alginate (0.5 %, 1 % and 2 %) was used as a reducing and stabilizing agent. Presence of particles was confirmed by UV-vis Spectroscopy, with absorbance maxima of 412-413 nm for 0.5 %, 1 % and 2 % of polymer. Hydrodynamic sizes of particles recorded for 0.5 %, 1 % and 2 % polymer were 128.4 ± 1.5, 129.9 ± 3.6 and 148.6 ± 1.0 nm by DLS. TEM revealed roughly spherical to cuboidal particles ranging from 15-20 nm and clusters of 100 nm and Energy Dispersive X-ray Spectroscopy confirmed the presence of silver in the particles. Analysis of the TEM images was done in MATLAB R2016b using histogram equalisation for image enhancement and entropy filtering for image segmentation. These techniques revealed the surface pores and polymer distribution around the particle. Statistical analysis (ANOVA) was performed for the measured fractal dimensions of nanoparticles with polymer coating, width of particle together with polymer coating, and thickness of only polymer coating around the particle for various study groups. Significant differences (p < 0.05) were found both between and within the study groups for fractal dimensions of nanoparticles with polymer coating, width of nanoparticles and thickness of polymer coating alone. The analysis was successful in confirming presence and thickness of polymer layer on particles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2020.102963DOI Listing

Publication Analysis

Top Keywords

polymer coating
20
thickness polymer
12
polymer
9
alginate-capped nanosilver
8
fractal dimensions
8
dimensions nanoparticles
8
nanoparticles polymer
8
coating width
8
study groups
8
analysis
5

Similar Publications

Polycalmagite Coating Enables Long-Term Alkaline Seawater Oxidation Over NiFe Layered Double Hydroxide.

Small

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China.

Renewable energy-powered seawater electrolysis is a green and attractive technique for producing high-purity hydrogen. However, severe chlorideions (Cl) and their derivatives tend to corrode anodic catalysts at ampere-level current densities and hinder the application of seawater-to-H systems. Herein, a polycalmagite (PCM)-coated NiFe layered double hydroxide is presented on Ni foam (NiFe LDH@PCM/NF) that exhibits exceptional stability in alkaline seawater.

View Article and Find Full Text PDF

Tailored Colloidal Shapes in Precursor Solutions for Efficient Blade-Coated Perovskite Solar Modules.

Adv Mater

January 2025

Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Metal halide perovskite solar cells (PSCs) have emerged as one of the most promising candidates for next-generation photovoltaic technologies. However, perovskite films deposited by blade-coating usually exhibit inferior film morphology compared to those fabricated by spin-coating, which hinders the power conversion efficiency (PCE) and stability of the scalable perovskite solar modules (PSMs). Herein, ellipsoidal colloids are tailored in the perovskite precursor solution by incorporating perovskite colloids and polymer additives.

View Article and Find Full Text PDF

Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity.

View Article and Find Full Text PDF

One-step fabrication of ultrathin porous Janus membrane within seconds for waterproof and breathable electronic skin.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China. Electronic address:

It remains a challenge for a simple and scalable method to fabricate ultrathin porous Janus membranes for stretchable on-skin electronics. Here, we propose a one-step droplet spreading phase separation strategy to prepare an ultrathin and easily collected Janus thermoplastic polyurethane (TPU) membrane within seconds. The metal-ion solvation structure mitigated migration kinetics to delay TPU solution demixing, promoting the further penetration of the coagulating solvent.

View Article and Find Full Text PDF

Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!