Artificial neural network (ANN) and response surface methodology (RSM) were employed to develop models for process optimisation of pilot scale nanofiltration (NF) and reverse osmosis (RO) membrane filtration system for the treatment of brackish groundwater. The process variables for this study were feed concentration, temperature, pH and pressure. The performance of NF/RO was assessed in terms of permeate flux, water recovery, salt rejection and specific energy consumption, which were considered as responses. The experimental design was employed to develop both RSM and ANN models. RSM model was validated for the whole range of experimental levels, while the ANN model was considered for the whole range of experimental design. RSM and ANN models were statistically analysed using analysis of variance (ANOVA). Further, the models were graphically compared for its predictive capacity. Numerical optimisation of NF and RO pilot plant to determine the optimum conditions were verified. Finally, using the optimum conditions, three hybrid configurations of NF and RO were studied to determine the best mode for the treatment of brackish groundwater. It was found that parallel NF-RO had a recovery of 57.18% and rejection of 44.89%, for RO-concentrate-NF (RO-C-NF) recovery was 49.55% and rejection of 38.64% & for NF-concentrate-RO (NF-C-RO), the recovery of 39.53% and rejection of 49.66% was obtained. Results obtained also suggested that the mode of configurations and the feed concentration affect the performance of the hybrid system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.111497 | DOI Listing |
Microorganisms
January 2025
Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS of Rome, 00168 Rome, Italy.
() is a Gram-negative, halophilic bacillus known for causing severe infections such as gastroenteritis, necrotizing fasciitis, and septic shock, with mortality rates exceeding 50% in high-risk individuals. Transmission occurs primarily through the consumption of contaminated seafood, exposure of open wounds to infected water, or, in rare cases, insect bites. The bacterium thrives in warm, brackish waters with high salinity levels, and its prevalence is rising due to the effects of climate change, including warming ocean temperatures and expanding coastal habitats.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, 1907 East Gate City Blvd, Greensboro, North Carolina 27401, United States.
An innovative biosorbent-based water remediation unit could reduce the demand for freshwater while protecting the surface and groundwater sources by using saline water resources, such as brine, brackish water, and seawater for irrigation. Herein, for the first time, we introduce a simple, rapid, and cost-effective iron(III)-tannate biosorbent-based technology, which functions as a stand-alone fixed-bed filter system for the treatment of salinity, heavy-metal contaminants, and pathogens present in a variety of water resources. Our approach presents a streamlined, cost-efficient, energy-saving, and sustainable avenue for water treatment, distinct from current adsorption desalination or conventional membrane techniques supplemented with chemical and UV treatments for disinfection.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Aquaculture Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
With freshwater resources becoming scarce worldwide, mariculture is a promising avenue to sustain aquaculture development, especially by incorporating brackish and saline groundwater (GW) use into fish farming. A 75-day rearing trial was conducted to evaluate fish growth, immune response, overall health, and water quality of Chelon ramada cultured in brackish GW and fed on a basal diet (BD) augmented with rosemary oil (RO) or RO + zymogen forte™ (ZF) as an anti-flatulent. Five treatments were administrated in triplicate: T1: fish-fed BD without additives (control group); T2: fish-fed BD + 0.
View Article and Find Full Text PDFMicrob Ecol
January 2025
MikroIker Research Group, Immunology, Microbiology and Parasitology Department, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de La Universidad 7, 01006, Vitoria-Gasteiz, Spain.
The Añana Salt Valley (northern Spain) is a continental saltern consisting of a series of natural springs that have been used for salt production for at least 7000 years. This habitat has been relatively understudied; therefore, prokaryotic diversity was investigated through Illumina-based 16S rRNA gene sequencing to determine if the waters within the valley exhibit distinctive microbiological characteristics. Two main types of water were found in the valley: salty (approximately 200 g/L salinity) from the diapiric structure and brackish (≤ 20 g/L salinity) from shallow streams.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:
Residual aluminum (Al) is a growing pollutant in nanofiltration (NF) membrane-based drinking water treatment. To investigate the impact of distinct Al species fouling layers on gypsum scaling during NF, gypsum scaling tests were conducted on bare and three Al-conditioned (AlCl-, Al, and Al-) membranes. The morphology of gypsum, the role of Al species on Ca adsorption during gypsum scaling, and the interactions between gypsum crystals and Al-conditioned membranes were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!