Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phosphate and phosphonates containing a single PN bond are frequently used pro-drug motifs to improve cell permeability of these otherwise anionic moieties. Upon entry into the cell, the PN bond is cleaved by phosphoramidases to release the active agent. Here, we apply a novel mono-amidation strategy to our laboratory's phosphonate-containing glycolysis inhibitor and show that a diverse panel of phosphonoamidates may be rapidly generated for in vitro screening. We show that, in contrast to the canonical l-alanine or benzylamine moieties which have previously been reported as efficacious pro-drug moieties, small and long-chain aliphatic amines demonstrate greater drug release efficacy for our phosphonate inhibitor. These results expand the scope of possible amine pro-drugs that can be used as second pro-drug leave groups for phosphate or phosphonate-containing drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2020.127656 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!