Aims: The progression of myocardial infarction (MI) involves multiple metabolic disorders. Bile acid metabolites have been increasingly recognized as pleiotropic signaling molecules that regulate multiple cardiovascular functions. G protein-coupled bile acid receptor (TGR5) is one of the receptors sensing bile acids to mediate their biological functions. In this study, we aimed to elucidate the effects of bile acids-TGR5 signaling pathways in myocardial infarction (MI).
Methods And Results: Blood samples of AMI patients or control subjects were collected and plasma was used for bile acid metabolism analysis. We discovered that bile acid levels were altered and deoxycholic acid (DCA) was substantially reduced in the plasma of AMI patients. Mice underwent either the LAD ligation model of MI or sham operation. Both MI and sham mice were gavaged with 10 mg/kg/d DCA or vehicle control since 3-day before the operation. Cardiac function was assessed by ultrasound echocardiography, infarct area was evaluated by TTC staining and Masson trichrome staining. Administration of DCA improved cardiac function and reduced ischemic injury at the 7th-day post-MI. The effects of DCA were dependent on binding to its receptor TGR5. Tgr5 mice underwent the same MI model. Cardiac function deteriorated and infarct size was increased at the 7th-day post-MI, which were not savaged by DCA administration. Moreover, DCA inhibited interleukin (IL)-1β expression in the infarcted hearts, and ameliorated IL-1β activation at 1-day post-MI. DCA inhibited NF-κB signaling and further IL-1β expression in cultured neonatal mouse cardiomyocytes under hypoxia as well as cardio-fibroblasts with the treatment of LPS.
Conclusions: DCA-TGR5 signaling pathway activation decreases inflammation and ameliorates heart function post-infarction. Strategies that control bile acid metabolism and TGR5 signaling to ameliorate the inflammatory responses may provide beneficial effects in patients with myocardial infarction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2020.10.014 | DOI Listing |
Alzheimers Dement
December 2024
Institute of Transformative Molecular Medicine, Case western Reserve University, Cleveland, OH, USA.
Background: Alzheimer's disease (AD) is a severe neurodegenerative condition that affects millions of people worldwide. The TgF344 AD rat model, which exhibits early depression-like behavior followed by later cognitive impairment, is widely used to evaluate putative biomarkers and potential treatments for AD. The P7C3 neuroprotective compounds have shown protective efficacy for both brain pathology and neuropsychiatric impairment in this model.
View Article and Find Full Text PDFBackground: Bile acids (BA) are steroids regulating nutrient absorption, energy metabolism, and mitochondrial function, and serve as important signaling molecules with a role in the gut-brain axis. The composition of BAs in humans changes with diet type and health status, which is well documented with a few known bile acids. In this study, we leveraged a new BA-specific spectral library curated in the Dorrestein lab at UCSD to expand the pool of detected BAs in Alzheimer-related LC-MS/MS datasets and provide links to dietary profiles and AD markers.
View Article and Find Full Text PDFSci Rep
January 2025
College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China.
Tibetan donkeys inhabit the harsh environment of the Qinghai-Tibet Plateau. Research on serum metabolites related to their high-altitude adaptation is limited compared to other livestock. We used liquid chromatography-mass spectrometry (LC-MS) to analyze serum samples from healthy adult donkeys in Shigatse, Changdu, and Dezhou to evaluate the effects of high altitudes on serum metabolites.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India.
Bile salts (BS) are naturally occurring steroidal biosurfactants. The ease of functionalization of BSs has boosted their use as inexpensive building blocks for the fabrication of a broad set of value-added soft functional materials. In the present work, three fluorescent bile acid (FBA) derivatives have been synthesized by conjugating anthracene at the side chain of lithocholic acid, deoxycholic acid, and cholic acid to understand the effect of the nature of the steroid nucleus on their physicochemical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!