OMA1 is a mitochondrial protease. Among its substrates are DELE1, a signaling peptide, which can elicit the integrated stress response, as well as the membrane-shaping dynamin-related GTPase OPA1, which can drive mitochondrial outer membrane permeabilization. OMA1 is dormant under physiological conditions but rapidly activated upon mitochondrial stress, such as loss of membrane potential or excessive reactive oxygen species. Accordingly, OMA1 was found to be activated in a number of disease conditions, including cancer and neurodegeneration. OMA1 has a predicted transmembrane domain and is believed to be tethered to the mitochondrial inner membrane. Yet, its structure has not been resolved and its context-dependent regulation remains obscure. Here, I review the literature with focus on OMA1's biochemistry. I provide a good homology model of OMA1's active site with a root-mean-square deviation of 0.9 Å and a DALI Z-score of 19.8. And I build a case for OMA1 actually being an integral membrane protease based on OMA1's role in the generation of small signaling peptides, its functional overlap with PARL, and OMA1's homology with ZMPSTE24. The refined understanding of this important enzyme can help with the design of tool compounds and development of chemical probes in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770061 | PMC |
http://dx.doi.org/10.1016/j.bbapap.2020.140558 | DOI Listing |
Exp Mol Med
January 2025
Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea.
Trogocytosis is a dynamic cellular process characterized by the exchange of the plasma membrane and associated cytosol during cell-to-cell interactions. Unlike phagocytosis, this transfer maintains the surface localization of transferred membrane molecules. For example, CD4 T cells engaging with antigen-presenting cells undergo trogocytosis, which facilitates the transfer of antigen-loaded major histocompatibility complex (MHC) class II molecules from antigen-presenting cells to CD4 T cells.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:
Proton exchange membrane fuel cell (PEMFC) with ultra-low Pt loading is highly desirable but confronts challenges of deficient activity and durability for practical application. Herein, we report a newly integrated catalyst layer based on 3D porous B-doped graphene (3D-PBG) with the atomic layer deposition of Pt (Pt/3D-PBG) for PEMFC, in which highly graphitized 3D-PBG not only provides a robust framework to support Pt but also B dopants further enhances the deposition of Pt and their electronic interaction, resulting in high-performance PEMFC at ultra-low Pt loading. The cell with Pt/3D-PBG at 80.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China. Electronic address:
With the unique photo-physical properties and strong bio-compatibility. Quantum dots (QDs) have sparked interest in biomedical fields such as imaging, biosensing and therapeutics. However, the low stability and insufficient tumor specificity have largely constrained their potential biomedical applications.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
Submerged membrane bioreactor (SMBR) is a promising technology in municipal wastewater treatment, but the membrane fouling has restricted its development. In this study, an integrated submerged ceramic membrane bioreactor (C-SMBR) was constructed to treat domestic wastewater, and the characteristics of membrane fouling and the microbial community structure were investigated. The results showed that the average removal efficiencies of COD, TN, NH-N reached 94.
View Article and Find Full Text PDFWater Res
December 2024
Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan. Electronic address:
Nanofiltration (NF) offers a scalable and energy-efficient method for lithium extraction from salt lakes. However, the selective separation of lithium from magnesium, particularly in brines with high magnesium concentrations, remains a significant challenge due to the close similarity in their hydrated ionic radii. The limited Li/Mgselectivity of current NF membranes is primarily attributed to insufficient control over pore size and surface charge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!