Benign prostatic hyperplasia (BPH) is a progressive proliferative disease, the incidence of which is constantly increasing due to aging of population. In this research, a hexokinase-II enzyme inhibiting agent, lonidamine - the use of which is limited in BPH treatment due to high hepatic toxicity observed after three months of treatment - was selected as an active agent, based on its mechanism of action in treating BPH. The aim of this study was to evaluate in vivo therapeutic efficacy and hepatic toxicity of lipid-polymer hybrid nanoparticles of lonidamine in a rat BPH model created in rat prostates. After local injections of hybrid nanoparticles of lonidamine were administered to the rat prostates, hyperplasic structures of prostates were evaluated in terms of prostatic index values, immunohistochemical evaluations, and histopathological findings. Liver blood enzyme values were also determined to specify hepatic toxicity. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) reaction and histopathological methods to determine intravital degenerative destruction in liver. Through this study, lonidamine-loaded hybrid nanoparticles were found to reduce the hepatic toxicity and increase therapeutic efficiency of lonidamine. Therefore, lonidamine-entrapped hybrid nanoparticles may provide a promising, and very safe, drug delivery strategy in the treatment of BPH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2020.10.016DOI Listing

Publication Analysis

Top Keywords

hybrid nanoparticles
20
hepatic toxicity
16
lipid-polymer hybrid
8
benign prostatic
8
prostatic hyperplasia
8
nanoparticles lonidamine
8
rat prostates
8
hybrid
5
nanoparticles
5
bph
5

Similar Publications

This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.

View Article and Find Full Text PDF

In this study, a novel hybrid nanostructure consisting of acid-decorated chitosan and magnetic AlFeO nanoparticles was fabricated. The acid-decorated chitosan provided a stable and biocompatible matrix for the magnetic AlFeO nanoparticles. Various techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction patterns (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), specific surface area (BET), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to characterize and confirm the successful synthesis of the hybrid nanostructure.

View Article and Find Full Text PDF

This work studies the generation of the orbital angular momentum (OAM) beam in the double quantum dot-metal nanoparticle (DQD-MNP) system under the application of the OAM beam. First, an analytical model is derived to attain the relations of probe and generated fields as a distance function in the DQD-MNP system under OAM applied field and spontaneously generated coherence (SGC) components. The calculation here is of material property; it differs from others by calculating energy states of the DQDs and the computation of the transition momenta between quantum dot (QD)-QD and QD-wetting layer (WL) transitions.

View Article and Find Full Text PDF

sp. nov., isolated from tree bark ( Chev.) and its antioxidant activity.

Int J Syst Evol Microbiol

January 2025

Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!