Objectives: This study hypothesized that left ventricular (LV) enlargement in Barlow disease can be explained by accounting for the total volume load that consists of transvalvular mitral regurgitation (MR) and the prolapse volume.
Background: Barlow disease is characterized by long prolapsing mitral leaflets that can harbor a significant amount of blood-the prolapse volume-at end-systole. The LV in Barlow disease can be disproportionately enlarged relative to MR severity, leading to speculation of Barlow cardiomyopathy.
Methods: Cardiac magnetic resonance (CMR) was used to compare MR, prolapse volume, and heart chambers remodeling in patients with Barlow disease (bileaflet prolapse [BLP]) and in single leaflet prolapse (SLP).
Results: A total of 157 patients (81 with BLP, 76 with SLP) were included. Patients with SLP were older and more had hypertension. Patients with BLP had more heart failure. Indexed LV end-diastolic volume was larger in BLP despite similar transvalvular MR. However, the prolapse volume was larger in BLP, which led to larger total volume load compared with SLP. Increasing tertiles of prolapse volume and MR both led to an incremental increase in LV end-diastolic volume in BLP. Using the total volume load improved the correlation with indexed LV end-diastolic volume in the BLP group, which closely matched that of SLP. A multivariable model that incorporated the prolapse volume explained left heart chamber enlargement better than a MR-based model, independent of prolapse category.
Conclusions: The prolapse volume is part of the total volume load exerted on the LV during the cardiac cycle and could help explain the disproportionate LV enlargement relative to MR severity noted in Barlow disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcmg.2020.08.029 | DOI Listing |
Eur J Clin Invest
January 2025
Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland.
Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.
Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.
Elife
January 2025
Institute of Clinical Sciences, Imperial College London, London, United Kingdom.
There are thousands of Mendelian diseases with more being discovered weekly and the majority have no approved treatments. To address this need, we require scalable approaches that are relatively inexpensive compared to traditional drug development. In the absence of a validated drug target, phenotypic screening in model organisms provides a route for identifying candidate treatments.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Molecular Ecology and Evolution at Bangor (MEEB), School of Environmental and Natural Sciences, Bangor University, Environment Centre Wales, Bangor LL57 2UW, UK.
Background: Snakebite envenoming, classified as a neglected tropical disease, poses a significant threat to life in India, where it is estimated to cause 58 000 fatalities as well as 140 000 morbidities annually. To reduce the occurrence of snakebite, we need a comprehensive understanding of human-snake conflict ecology. Snake rescue networks represent a vital resource for gathering such ecological data.
View Article and Find Full Text PDFNature
January 2025
Allen Institute for Brain Science, Seattle, WA, USA.
Diseases
December 2024
Department of Neurology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania.
Noncardiogenic pulmonary edema after cardiac surgery is a rare but severe complication. The etiology remains poorly understood; however, the issue may arise from multiple sources. Possible causes include a significant inflammatory response or an autoimmune process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!