Knowledge of the Se fractionation and the role of dissolved organic matter (DOM) in soil is the key to understanding Se mobility and its bioavailability in the soil-plant system. In this study, single extractions using phosphate-buffer (PBS), sequential extraction procedures (SEP), and diffusive gradients in thin-films (DGT) were used to measure Se bioavailability in soil supplemented with selenite and organic amendment (cow and chicken manures). Selenium fraction was isolated into DOM-Se fractions, such as hydrophilic acid-bound Se (HY-Se), fulvic acid-bound Se (FA-Se), humic acid-bound Se (HA-Se), and hydrophobic organic neutral-bound Se (HON-Se), by a rapid batch technique using XAD-8 resin (AMBERLITE XAD™, USA). Simultaneous application of either cow or chicken manure with selenite could result in the decrease of Se availability in the soil. Isolating Se available fraction into DOM-Se fractions showed that low-molecular-weight DOM-Se as an available fraction and even HY-Se as a less available fraction (OM-Se) were likely the major sources for Brassica juncea (L.) Czern. et Coss uptake in soil. Moreover, knowledge of the DOM-Se composition, especially the low-molecular-weight DOM-Se fractions, is important for assessing the bioavailability of Se in soil, the results of which are more accurate than the chemical extraction method. The high value of Pearson correlation coefficients between CDGT-Se and Se concentrations in shoots, tubers and roots of Brassica juncea (L.) Czern. et Coss in cow and chicken manures treatment were 0.95 and 0.99, 0.96 and 0,96, and 0.89 and 0.97 (p < 0,05), respectively, indicating that DGT-Se can reflect the Se uptake ability by plants and can be used to predict the bioavailability of Se when manure and selenite are simultaneously applied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.143047 | DOI Listing |
Sci Total Environ
April 2021
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China. Electronic address:
Knowledge of the Se fractionation and the role of dissolved organic matter (DOM) in soil is the key to understanding Se mobility and its bioavailability in the soil-plant system. In this study, single extractions using phosphate-buffer (PBS), sequential extraction procedures (SEP), and diffusive gradients in thin-films (DGT) were used to measure Se bioavailability in soil supplemented with selenite and organic amendment (cow and chicken manures). Selenium fraction was isolated into DOM-Se fractions, such as hydrophilic acid-bound Se (HY-Se), fulvic acid-bound Se (FA-Se), humic acid-bound Se (HA-Se), and hydrophobic organic neutral-bound Se (HON-Se), by a rapid batch technique using XAD-8 resin (AMBERLITE XAD™, USA).
View Article and Find Full Text PDFEnviron Pollut
April 2020
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China. Electronic address:
Straw amendment and plant root exudates modify the quality and quantities of soil dissolved organic matter (DOM) and then manipulate the fractions of soil selenium (Se) and its bioavailability. Two typical soils with distinct pH were selected to investigate the effect of different contributors on DOM-Se in soil. The mechanisms relying on the variation in DOM characteristics (quality, quantity and composition) were explored by UV-Vis, ATR-FTIR and 3D-EEM.
View Article and Find Full Text PDFSci Total Environ
March 2019
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China. Electronic address:
Soil dissolved organic matter (DOM) alters heavy metal availability, but whether straw amendment can manipulate soil selenium (Se) speciation and availability through DOM mineralization remains unclear. In this study, allochthonous maize straw and selenate were incubated together in four different soils for 1 y. The transformation and availability of DOM associated Se (DOM-Se) was investigated during aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!