Reverse Osmosis (RO) is becoming increasingly popular for seawater desalination and wastewater reclamation. However, fouling of the membranes adversely impacts the overall process efficiency and economics. To date, several strategies and approaches have been used in RO plants and investigated at the laboratory-scale for their effectiveness in the control of different fouling types. Amid growing concerns and stringent regulations for the conservation of environment, there is an increasing trend to identify technologies that are effective in fouling mitigation as well as friendly to the environment. The present review elaborates on the different types of environment-friendly technologies for membrane fouling control that are currently being used or under investigation. It commences with a brief introduction to the global water crisis and the potential of membrane-based processes in overcoming this problem. This is followed by a section on membrane fouling that briefly describes the major fouling types and their impact on the membrane performance. Section 3 discusses the predominant fouling control/prevention strategies including feedwater pretreatment, membrane and spacer surface modification and membrane cleaning. The currently employed techniques are discussed together with their drawbacks, with some light being shed on the emerging technologies that have the ability to overcome the current limitations. The penultimate section provides a detailed discussion on a variety of eco-friendly/chemical free techniques investigated to control different fouling types. These include both control and prevention strategies, for example, bioflocculation and electromagnetic fields, as well as remediation techniques such as osmotic backwashing and gas purging. In addition, quorum sensing has been specifically discussed for biofouling remediation. The promising findings from different studies are presented followed by a discussion on their drawbacks and limitations. The review concludes with a need for carrying out fundamental studies to develop better understanding of the eco-friendly processes discussed in the penultimate section and their optimization for possible integration into the RO plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142721DOI Listing

Publication Analysis

Top Keywords

fouling types
12
fouling
9
fouling control
8
reverse osmosis
8
environment-friendly technologies
8
control fouling
8
membrane fouling
8
membrane
5
control reverse
4
osmosis water
4

Similar Publications

Calcium-organic matter fouling in nanofiltration: Synchrotron-based X-ray fluorescence and absorption near-edge structure spectroscopy for speciation.

Water Res

December 2024

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.

View Article and Find Full Text PDF

Illuminating for purity: Photocatalytic and photothermal membranes for sustainable oil-water separation.

Water Res

December 2024

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua China. Electronic address:

Article Synopsis
  • * These membranes are classified into four types based on their mechanisms: photocatalytic membranes, photo-Fenton membranes, PMS-assisted photocatalytic membranes, and photothermal membranes, each utilizing light to improve efficacy in oil-water separation.
  • * The review covers the principles of light-driven advanced oxidation processes, fabrication methods, practical applications, and challenges faced by these hybrid membranes while suggesting directions for future research.
View Article and Find Full Text PDF

Liquid-Solid Triboelectric Nanogenerator-Based DNA Barcode Detection Biosensor for Species Identification.

Adv Sci (Weinh)

December 2024

Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

DNA barcode detection method is widely applied for species identification, which is imperative to evaluate the effect of human economic activities on the biodiversity of ecosystem. However, the wide utilization of existing detection biosensors is limited by bulky and expensive instruments, such as Raman spectroscopy and electrochemical station. Herein, a liquid-solid triboelectric nanogenerator (TENG)-based DNA barcode detection biosensor is proposed, which consists of water flow, fluid channel, and PDMS film attached by specifically designed capture probe.

View Article and Find Full Text PDF

Modeling MBR fouling: A critical review analysis towards establishing a framework for good modeling practices.

Water Res

January 2025

Departament d'Enginyeria Química, ETSE-UV, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia 46100, Spain. Electronic address:

This study critically analyses filtration process modeling in membrane bioreactor (MBR) technology. More specifically, the variety of approaches and assumptions considered within a curated selection of resistance-in-series (RIS) filtration models found in the literature is critically assessed. Aimed to move towards good filtration process modeling practices, the basis for establishing a unified framework rooted in the fundamentals of membrane fouling is defined in this work, considering fouling classifications, process dynamics, and underlying processes used by different authors for elucidating membrane fouling phenomena.

View Article and Find Full Text PDF

Boron nitride nanoslits for water desalination via forward osmosis: A molecular dynamics study.

J Mol Graph Model

January 2025

Department of Mechanical and Aerospace Engineering, Nazarbayev University, 53 Kabanbay Batyr Ave, 010000, Astana, Akmola, Kazakhstan.

The global shortage of freshwater resources has spurred significant interest among scientists in the development of cost-effective and highly efficient water desalination methods. The forward osmosis (FO) membrane has become well-known for its various advantages, such as its low energy usage, cost-effective performance, high efficiency in desalination, and minimal fouling. Herein, the desalination performance of an FO system containing a boron-nitride slit membrane (BNSM) was investigated using molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!